@article{SIGMA_2018_14_a17,
author = {Christophe Charlier and Alfredo Dea\~no},
title = {Asymptotics for {Hankel} {Determinants} {Associated} to a {Hermite} {Weight} with a {Varying} {Discontinuity}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a17/}
}
TY - JOUR AU - Christophe Charlier AU - Alfredo Deaño TI - Asymptotics for Hankel Determinants Associated to a Hermite Weight with a Varying Discontinuity JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a17/ LA - en ID - SIGMA_2018_14_a17 ER -
%0 Journal Article %A Christophe Charlier %A Alfredo Deaño %T Asymptotics for Hankel Determinants Associated to a Hermite Weight with a Varying Discontinuity %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a17/ %G en %F SIGMA_2018_14_a17
Christophe Charlier; Alfredo Deaño. Asymptotics for Hankel Determinants Associated to a Hermite Weight with a Varying Discontinuity. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a17/
[1] Anderson G. W., Guionnet A., Zeitouni O., An introduction to random matrices, Cambridge Studies in Advanced Mathematics, 118, Cambridge University Press, Cambridge, 2010 | DOI | MR
[2] Atkin M., Charlier C., Zohren S., “On the ratio probability of the smallest eigenvalues in the Laguerre unitary ensemble”, Nonlinearity, 31 (2018), 1155–1196, arXiv: 1611.00631 | DOI
[3] Bertola M., Bothner T., “Zeros of large degree Vorob'ev–Yablonski polynomials via a Hankel determinant identity”, Int. Math. Res. Not., 2015 (2015), 9330–9399, arXiv: 1401.1408 | DOI | MR
[4] Bertola M., Lee S. Y., “First colonization of a hard-edge in random matrix theory”, Constr. Approx., 31 (2010), 231–257, arXiv: 0711.3625 | DOI | MR
[5] Bohigas O., Pato M. P., “Missing levels in correlated spectra”, Phys. Lett. B, 595 (2004), 171–176, arXiv: nucl-th/0403006 | DOI
[6] Bothner T., Deift P., Its A., Krasovsky I., “On the asymptotic behavior of a log gas in the bulk scaling limit in the presence of a varying external potential I”, Comm. Math. Phys., 337 (2015), 1397–1463, arXiv: 1407.2910 | DOI | MR
[7] Brézin E., Hikami S., “Characteristic polynomials of real symmetric random matrices”, Comm. Math. Phys., 223 (2001), 363–382, arXiv: math-ph/0103012 | DOI | MR
[8] Buckingham R., Large-degree asymptotics of rational Painlevé-IV functions associated to generalized Hermite polynomials, arXiv: 1706.09005
[9] Charlier C., “Asymptotics of Hankel determinants with a one-cut regular potential and Fisher–Hartwig singularities”, Int. Math. Res. Not. (to appear) , arXiv: 1706.03579 | DOI
[10] Charlier C., Claeys T., “Asymptotics for Toeplitz determinants: perturbation of symbols with a gap”, J. Math. Phys., 56 (2015), 022705, 23 pp., arXiv: 1409.0435 | DOI | MR
[11] Charlier C., Claeys T., “Thinning and conditioning of the circular unitary ensemble”, Random Matrices Theory Appl., 6 (2017), 1750007, 51 pp., arXiv: 1604.08399 | DOI | MR
[12] Claeys T., “Birth of a cut in unitary random matrix ensembles”, Int. Math. Res. Not., 2008 (2008), rnm166, 40 pp., arXiv: 0711.2609 | DOI | MR
[13] Clarkson P. A., “Painlevé equations – nonlinear special functions”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1883, Springer, Berlin, 2006, 331–411 | DOI | MR
[14] Clarkson P. A., Jordaan K., “The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation”, Constr. Approx., 39 (2014), 223–254, arXiv: 1301.4134 | DOI | MR
[15] Deaño A., Simm N. J., “On the probability of positive-definiteness in the gGUE via semi-classical Laguerre polynomials”, J. Approx. Theory, 220 (2017), 44–59, arXiv: 1610.08561 | DOI | MR
[16] Deift P., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, Courant Lecture Notes in Mathematics, 3, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 1999 | MR
[17] Deift P., Its A., Krasovsky I., “Asymptotics of Toeplitz, Hankel, and Toeplitz+Hankel determinants with Fisher–Hartwig singularities”, Ann. of Math., 174 (2011), 1243–1299, arXiv: 0905.0443 | DOI | MR
[18] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52 (1999), 1491–1552 | 3.3.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[19] Deift P., Kriecherbauer T., McLaughlin K. T.-R., Venakides S., Zhou X., “Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory”, Comm. Pure Appl. Math., 52 (1999), 1335–1425 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR
[20] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems”, Bull. Amer. Math. Soc. (N.S.), 26 (1992), 119–123, arXiv: math.AP/9201261 | DOI | MR
[21] Deift P., Zhou X., “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math., 137 (1993), 295–368 | DOI | MR
[22] Fokas A. S., Its A. R., Kitaev A. V., “The isomonodromy approach to matrix models in $2$D quantum gravity”, Comm. Math. Phys., 147 (1992), 395–430 | DOI | MR
[23] Forrester P. J., Witte N. S., “Application of the $\tau$-function theory of Painlevé equations to random matrices: PIV, PII and the GUE”, Comm. Math. Phys., 219 (2001), 357–398, arXiv: math-ph/0103025 | DOI | MR
[24] Foulquié Moreno A., Martínez-Finkelshtein A., Sousa V. L., “On a conjecture of A. Magnus concerning the asymptotic behavior of the recurrence coefficients of the generalized Jacobi polynomials”, J. Approx. Theory, 162 (2010), 807–831, arXiv: 0905.2753 | DOI | MR
[25] Garoni T. M., “On the asymptotics of some large Hankel determinants generated by Fisher–Hartwig symbols defined on the real line”, J. Math. Phys., 46 (2005), 043516, 19 pp., arXiv: math-ph/0411019 | DOI | MR
[26] Gromak V. I., Laine I., Shimomura S., Painlevé differential equations in the complex plane, De Gruyter Studies in Mathematics, 28, Walter de Gruyter Co., Berlin, 2002 | DOI | MR
[27] Its A., Krasovsky I., “Hankel determinant and orthogonal polynomials for the Gaussian weight with a jump”, Integrable systems and random matrices, Contemp. Math., 458, Amer. Math. Soc., Providence, RI, 2008, 215–247, arXiv: 0706.3192 | DOI | MR
[28] Kajiwara K., Ohta Y., “Determinant structure of the rational solutions for the Painlevé IV equation”, J. Phys. A: Math. Gen., 31 (1998), 2431–2446, arXiv: solv-int/9709011 | DOI | MR
[29] Krasovsky I., “Correlations of the characteristic polynomials in the Gaussian unitary ensemble or a singular Hankel determinant”, Duke Math. J., 139 (2007), 581–619, arXiv: math-ph/0411016 | DOI | MR
[30] Kuijlaars A. B. J., McLaughlin K. T.-R., Van Assche W., Vanlessen M., “The Riemann–Hilbert approach to strong asymptotics for orthogonal polynomials on $[-1,1]$”, Adv. Math., 188 (2004), 337–398, arXiv: math.CA/0111252 | DOI | MR
[31] Kuijlaars A. B. J., Vanlessen M., “Universality for eigenvalue correlations at the origin of the spectrum”, Comm. Math. Phys., 243 (2003), 163–191, arXiv: math-ph/0305044 | DOI | MR
[32] Mehta M. L., Random matrices, Pure and Applied Mathematics (Amsterdam), 142, 3rd ed., Elsevier/Academic Press, Amsterdam, 2004 | MR
[33] Mehta M. L., Normand J.-M., “Probability density of the determinant of a random Hermitian matrix”, J. Phys. A: Math. Gen., 31 (1998), 5377–5391 | DOI | MR
[34] Mo M. Y., “The Riemann–Hilbert approach to double scaling limit of random matrix eigenvalues near the “birth of a cut” transition”, Int. Math. Res. Not., 2008 (2008), rnn042, 51 pp., arXiv: 0711.3208 | DOI | MR
[35] Okamoto K., “Studies on the Painlevé equations. III. Second and fourth Painlevé equations, $P_{{\rm II}}$ and $P_{{\rm IV}}$”, Math. Ann., 275 (1986), 221–255 | DOI | MR
[36] Olver F. W. J., Olde Daalhuis A. B., Lozier D. W., Schneider B. I., Boisvert R. F., Clark C. W., Miller B. R., Saunders B. V. (eds.), NIST digital library of mathematical functions, Release 1.0.13 of 2016-09-16, http://dlmf.nist.gov/ | MR
[37] Saff E.B., Totik V., Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, 316, Springer-Verlag, Berlin, 1997 | DOI | MR
[38] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR
[39] Vanlessen M., “Strong asymptotics of Laguerre-type orthogonal polynomials and applications in random matrix theory”, Constr. Approx., 25 (2007), 125–175, arXiv: math.CA/0504604 | DOI | MR
[40] Winternitz P., “Physical applications of Painlevé type equations quadratic in the highest derivatives”, Painlevé Transcendents (Sainte-Adèle, PQ, 1990), NATO Adv. Sci. Inst. Ser. B Phys., 278, Plenum, New York, 1992, 425–431 | MR
[41] Wu X.-B., Xu S.-X., Zhao Y.-Q., “Gaussian unitary ensemble with boundary spectrum singularity and $\sigma$-form of the Painlevé II equation”, Stud. Appl. Math., 140 (2018), 221–251, arXiv: 1706.03174 | DOI