Evolutionary Hirota Type $(2+1)$-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show that evolutionary Hirota type Euler–Lagrange equations in $(2+1)$ dimensions have a symplectic Monge–Ampère form. We consider integrable equations of this type in the sense that they admit infinitely many hydrodynamic reductions and determine Lax pairs for them. For two seven-parameter families of integrable equations converted to two-component form we have constructed Lagrangians, recursion operators and bi-Hamiltonian representations. We have also presented a six-parameter family of tri-Hamiltonian systems.
Keywords: Lax pair; recursion operator; Hamiltonian operator; bi-Hamiltonian system.
@article{SIGMA_2018_14_a16,
     author = {Mikhail B. Sheftel and Devrim Yazici},
     title = {Evolutionary {Hirota} {Type} $(2+1)${-Dimensional} {Equations:} {Lax} {Pairs,} {Recursion} {Operators} and {Bi-Hamiltonian} {Structures}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a16/}
}
TY  - JOUR
AU  - Mikhail B. Sheftel
AU  - Devrim Yazici
TI  - Evolutionary Hirota Type $(2+1)$-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a16/
LA  - en
ID  - SIGMA_2018_14_a16
ER  - 
%0 Journal Article
%A Mikhail B. Sheftel
%A Devrim Yazici
%T Evolutionary Hirota Type $(2+1)$-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a16/
%G en
%F SIGMA_2018_14_a16
Mikhail B. Sheftel; Devrim Yazici. Evolutionary Hirota Type $(2+1)$-Dimensional Equations: Lax Pairs, Recursion Operators and Bi-Hamiltonian Structures. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a16/

[1] Dirac P. A.M., Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series, 2, Belfer Graduate School of Science, New York, 1967 | MR

[2] Doubrov B., Ferapontov E. V., “On the integrability of symplectic Monge–Ampère equations”, J. Geom. Phys., 60 (2010), 1604–1616, arXiv: 0910.3407 | DOI | MR

[3] Ferapontov E. V., Hadjikos L., Khusnutdinova K. R., “Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian”, Int. Math. Res. Not., 2010 (2010), 496–535, arXiv: 0705.1774 | DOI | MR

[4] Ferapontov E. V., Khusnutdinova K. R., “Hydrodynamic reductions of multidimensional dispersionless PDEs: the test for integrability”, J. Math. Phys., 45 (2004), 2365–2377, arXiv: nlin.SI/0312015 | DOI | MR

[5] Ferapontov E. V., Khusnutdinova K. R., “On the integrability of $(2+1)$-dimensional quasilinear systems”, Comm. Math. Phys., 248 (2004), 187–206, arXiv: nlin.SI/0305044 | DOI | MR

[6] Ferapontov E. V., Kruglikov B., Novikov V., Integrability of dispersionless Hirota type equations in 4D and the symplectic Monge–Ampère property, arXiv: 1707.08070

[7] Fuchssteiner B., Fokas A. S., “Symplectic structures, their Bäcklund transformations and hereditary symmetries”, Phys. D, 4 (1981), 47–66 | DOI | MR

[8] Guthrie G. A., “Recursion operators and non-local symmetries”, Proc. Roy. Soc. London Ser. A, 446 (1994), 107–114 | DOI | MR

[9] Krasil'shchik J., Verbovetsky A., “Geometry of jet spaces and integrable systems”, J. Geom. Phys., 61 (2011), 1633–1674, arXiv: 1002.0077 | DOI | MR

[10] Magri F., “A simple model of the integrable Hamiltonian equation”, J. Math. Phys., 19 (1978), 1156–1162 | DOI | MR

[11] Magri F., “A geometrical approach to the nonlinear solvable equations”, Nonlinear Evolution Equations and Dynamical Systems, Proc. Meeting (Univ. Lecce, Lecce, 1979), Lecture Notes in Phys., 120, Springer, Berlin–New York, 1980, 233–263 | DOI | MR

[12] Marvan M., “Another look on recursion operators”, Differential Geometry and Applications (Brno, 1995), Masaryk University, Brno, 1996, 393–402 | MR

[13] Neyzi F., Nutku Y., Sheftel M. B., “Multi-Hamiltonian structure of Plebanski's second heavenly equation”, J. Phys. A: Math. Gen., 38 (2005), 8473–8485, arXiv: nlin.SI/0505030 | DOI | MR

[14] Olver P. J., Applications of Lie groups to differential equations, Graduate Texts in Mathematics, 107, Springer-Verlag, New York, 1986 | DOI | MR

[15] Papachristou C. J., “Potential symmetries for self-dual gauge fields”, Phys. Lett. A, 145 (1990), 250–254 | DOI | MR

[16] Sergyeyev A., “A simple construction of recursion operators for multidimensional dispersionless integrable systems”, J. Math. Anal. Appl., 454 (2017), 468–480, arXiv: 1501.01955 | DOI | MR

[17] Sheftel M. B., Yaz{\i}cı D., “Recursion operators and tri-Hamiltonian structure of the first heavenly equation of Plebański”, SIGMA, 12 (2016), 091, 17 pp., arXiv: 1605.07770 | DOI | MR

[18] Sheftel M. B., Yaz{\i}cı D., Malykh A. A., “Recursion operators and bi-Hamiltonian structure of the general heavenly equation”, J. Geom. Phys., 116 (2017), 124–139, arXiv: 1510.03666 | DOI | MR