@article{SIGMA_2018_14_a15,
author = {Daniel M. Kane and Joseph Palmer and \'Alvaro Pelayo},
title = {Classifying {Toric} and {Semitoric} {Fans} by {Lifting} {Equations} from $\mathrm{SL}_2({\mathbb Z})$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a15/}
}
TY - JOUR
AU - Daniel M. Kane
AU - Joseph Palmer
AU - Álvaro Pelayo
TI - Classifying Toric and Semitoric Fans by Lifting Equations from $\mathrm{SL}_2({\mathbb Z})$
JO - Symmetry, integrability and geometry: methods and applications
PY - 2018
VL - 14
UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a15/
LA - en
ID - SIGMA_2018_14_a15
ER -
%0 Journal Article
%A Daniel M. Kane
%A Joseph Palmer
%A Álvaro Pelayo
%T Classifying Toric and Semitoric Fans by Lifting Equations from $\mathrm{SL}_2({\mathbb Z})$
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a15/
%G en
%F SIGMA_2018_14_a15
Daniel M. Kane; Joseph Palmer; Álvaro Pelayo. Classifying Toric and Semitoric Fans by Lifting Equations from $\mathrm{SL}_2({\mathbb Z})$. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a15/
[1] Abraham R., Marsden J. E., Foundations of mechanics, Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978 | MR
[2] Atiyah M. F., “Convexity and commuting Hamiltonians”, Bull. London Math. Soc., 14 (1982), 1–15 | DOI | MR
[3] Babelon O., Douçot B., “Classical Bethe Ansatz and normal forms in an integrable version of the Dicke model”, Phys. D, 241 (2012), 2095–2108 | DOI | MR
[4] Babelon O., Douçot B., “Higher index focus-focus singularities in the Jaynes–Cummings–Gaudin model: symplectic invariants and monodromy”, J. Geom. Phys., 87 (2015), 3–29, arXiv: 1312.6087 | DOI | MR
[5] Borman M. S., Li T.-J., Wu W., “Spherical Lagrangians via ball packings and symplectic cutting”, Selecta Math. (N.S.), 20 (2014), 261–283, arXiv: 1211.5952 | DOI | MR
[6] Cannas da Silva A., Lectures on symplectic geometry, Lecture Notes in Math., 1764, Springer-Verlag, Berlin, 2001 | DOI | MR
[7] Charles L., Pelayo Á., Vũ Ngọc S., “Isospectrality for quantum toric integrable systems”, Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 815–849, arXiv: 1111.5985 | DOI | MR
[8] Colin de Verdière Y., “Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. I. Le cas non intégrable”, Duke Math. J., 46 (1979), 169–182 | DOI | MR
[9] Colin de Verdière Y., “Spectre conjoint d'opérateurs pseudo-différentiels qui commutent. II. Le cas intégrable”, Math. Z., 171 (1980), 51–73 | DOI | MR
[10] Cox D., What is a toric variety?, Topics in Algebraic Geometry and Geometric Modeling, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, 2003, 203–223 | DOI | MR
[11] Cox D. A., Little J. B., Schenck H. K., Toric varieties, Graduate Studies in Mathematics, 124, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR
[12] Cummings F. W., “Stimulated emission of radiation in a single mode”, Phys. Rev., 140 (1965), A1051–A1056 | DOI
[13] Danilov V. I., “The geometry of toric varieties”, Russian Math. Surveys, 33:2 (1978), 97–154 | DOI | MR
[14] Delzant T., “Hamiltoniens périodiques et images convexes de l'application moment”, Bull. Soc. Math. France, 116 (1988), 315–339 | DOI | MR
[15] Duistermaat J. J., Pelayo Á., “Reduced phase space and toric variety coordinatizations of Delzant spaces”, Math. Proc. Cambridge Philos. Soc., 146 (2009), 695–718, arXiv: 0704.0430 | DOI | MR
[16] Dullin H. R., “Semi-global symplectic invariants of the spherical pendulum”, J. Differential Equations, 254 (2013), 2942–2963, arXiv: 1108.4962 | DOI | MR
[17] Eliashberg Y., Polterovich L., Symplectic quasi-states on the quadric surface and Lagrangian submanifolds, arXiv: 1006.2501
[18] Fulton W., Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993 | DOI | MR
[19] Gross M., Siebert B., “Mirror symmetry via logarithmic degeneration data. I”, J. Differential Geom., 72 (2006), 169–338, arXiv: math.AG/0309070 | DOI | MR
[20] Gross M., Siebert B., “Mirror symmetry via logarithmic degeneration data, II”, J. Algebraic Geom., 19 (2010), 679–780, arXiv: 0709.2290 | DOI | MR
[21] Gross M., Siebert B., “From real affine geometry to complex geometry,”, Ann. of Math., 174 (2011), 1301–1428, arXiv: math.AG/0703822 | DOI | MR
[22] Guillemin V., “Kaehler structures on toric varieties”, J. Differential Geom., 40 (1994), 285–309 | DOI | MR
[23] Guillemin V., Moment maps and combinatorial invariants of Hamiltonian $T^n$-spaces, Progr. Math., 122, Birkhäuser Boston, Inc., Boston, MA, 1994 | DOI | MR
[24] Guillemin V., Sternberg S., “Convexity properties of the moment mapping”, Invent. Math., 67 (1982), 491–513 | DOI | MR
[25] Hohloch S., Palmer J., A family of compact semitoric systems with two focus-focus singularities, arXiv: 1710.05746
[26] Jaynes E. T., Cummings F. W., “Comparison of quantum and semiclassical radiation theories with application to the beam maser”, Proc. IEEE, 51 (1963), 89–109 | DOI
[27] Kane D. M., Palmer J., Pelayo Á., “Minimal models of compact symplectic semitoric manifolds”, J. Geom. Phys., 125 (2018), 49–74, arXiv: 1610.05423 | DOI | MR
[28] Karshon Y., Kessler L., “Circle and torus actions on equal symplectic blow-ups of $\mathbb C{\rm P}^2$”, Math. Res. Lett., 14 (2007), 807–823, arXiv: math.SG/0501011 | DOI | MR
[29] Kassel C., Turaev V., Braid groups, Graduate Texts in Mathematics, 247, Springer, New York, 2008 | DOI | MR
[30] Kontsevich M., Soibelman Y., “Affine structures and non-Archimedean analytic spaces”, The Unity of Mathematics, Progr. Math., 244, Birkhäuser Boston, Boston, MA, 2006, 321–385, arXiv: math.AG/0406564 | DOI | MR
[31] Kostant B., On convexity, the {W}eyl group and the {I}wasawa decomposition,, Ann. Sci. École Norm. Sup. (4), 6 (1973), 413–455 | DOI | MR
[32] Leung N. C., Symington M., “Almost toric symplectic four-manifolds”, J. Symplectic Geom., 8 (2010), 143–187, arXiv: math.SG/0312165 | DOI | MR
[33] Miller E., What is {$\ldots$} a toric variety?, Notices Amer. Math. Soc., 55 (2008), 586–587 | MR
[34] Oda T., Convex bodies and algebraic geometry. An introduction to the theory of toric varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 15, Springer-Verlag, Berlin, 1988 | MR
[35] Palmer J., “Moduli spaces of semitoric systems”, J. Geom. Phys., 115 (2017), 191–217, arXiv: 1502.07296 | DOI | MR
[36] Pelayo Á., Pires A. R., Ratiu T. S., Sabatini S., “Moduli spaces of toric manifolds”, Geom. Dedicata, 169 (2014), 323–341, arXiv: 1207.0092 | DOI | MR
[37] Pelayo Á., Vũ Ngọc S., “Semitoric integrable systems on symplectic 4-manifolds”, Invent. Math., 177 (2009), 571–597, arXiv: 0806.1946 | DOI | MR
[38] Pelayo Á., Vũ Ngọc S., “Constructing integrable systems of semitoric type”, Acta Math., 206 (2011), 93–125, arXiv: 0903.3376 | DOI | MR
[39] Pelayo Á., Vũ Ngọc S., “Symplectic theory of completely integrable Hamiltonian systems”, Bull. Amer. Math. Soc. (N.S.), 48 (2011), 409–455, arXiv: 1306.0115 | DOI | MR
[40] Pelayo Á., Vũ Ngọc S., “First steps in symplectic and spectral theory of integrable systems”, Discrete Contin. Dyn. Syst., 32 (2012), 3325–3377, arXiv: 1306.0124 | DOI | MR
[41] Pelayo Á., Vũ Ngọc S., “Hamiltonian dynamics and spectral theory for spin-oscillators”, Comm. Math. Phys., 309 (2012), 123–154, arXiv: 1005.0439 | DOI | MR
[42] Poonen B., Rodriguez-Villegas F., “Lattice polygons and the number 12”, Amer. Math. Monthly, 107 (2000), 238–250 | DOI | MR
[43] Sepe D., Vũ Ngọc S., Integrable systems, symmetries and quantization, arXiv: 1704.06686 | MR
[44] Symington M., “Four dimensions from two in symplectic topology”, Topology and Geometry of Manifolds (Athens, GA, 2001), Proc. Sympos. Pure Math., 71, Amer. Math. Soc., Providence, RI, 2003, 153–208, arXiv: math.SG/0210033 | DOI | MR
[45] Vũ Ngọc S., “On semi-global invariants for focus-focus singularities”, Topology, 42 (2003), 365–380, arXiv: math.SG/0208245 | DOI | MR
[46] Vũ Ngọc S., “Moment polytopes for symplectic manifolds with monodromy”, Adv. Math., 208 (2007), 909–934, arXiv: math.SG/0504165 | DOI | MR
[47] Vianna R., “On exotic Lagrangian tori in $\mathbb{CP}^2$”, Geom. Topol., 18 (2014), 2419–2476, arXiv: 1305.7512 | DOI | MR
[48] Zelditch S., “The inverse spectral problem for surfaces of revolution”, J. Differential Geom., 49 (1998), 207–264, arXiv: math-ph/0002012 | DOI | MR