Billiards and Tilting Characters for $\mathrm{SL}_3$
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We formulate a conjecture for the second generation characters of indecomposable tilting modules for $\mathrm{SL}_3$. This gives many new conjectural decomposition numbers for symmetric groups. Our conjecture can be interpreted as saying that these characters are governed by a discrete dynamical system (“billiards bouncing in alcoves”). The conjecture implies that decomposition numbers for symmetric groups display (at least) exponential growth.
Keywords: tilting modules; billiards; $p$-canonical basis; symmetric group.
@article{SIGMA_2018_14_a14,
     author = {George Lusztig and Geordie Williamson},
     title = {Billiards and {Tilting} {Characters} for $\mathrm{SL}_3$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a14/}
}
TY  - JOUR
AU  - George Lusztig
AU  - Geordie Williamson
TI  - Billiards and Tilting Characters for $\mathrm{SL}_3$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a14/
LA  - en
ID  - SIGMA_2018_14_a14
ER  - 
%0 Journal Article
%A George Lusztig
%A Geordie Williamson
%T Billiards and Tilting Characters for $\mathrm{SL}_3$
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a14/
%G en
%F SIGMA_2018_14_a14
George Lusztig; Geordie Williamson. Billiards and Tilting Characters for $\mathrm{SL}_3$. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a14/

[1] Achar P. N., Makisumi S., Riche S., Williamson G., Free-monodromic mixed tilting sheaves on flag varieties, arXiv: 1703.05843

[2] Achar P. N., Makisumi S., Riche S., Williamson G., Koszul duality for Kac–Moody groups and characters of tilting modules, arXiv: 1706.00183

[3] Achar P. N., Rider L., “The affine Grassmannian and the Springer resolution in positive characteristic”, Compos. Math., 152 (2016), 2627–2677, arXiv: 1408.7050 | DOI | MR

[4] Achar P. N., Rider L., Reductive groups, the loop Grassmannian, and the Springer resolution, arXiv: 1602.04412

[5] Andersen H. H., “Filtrations and tilting modules”, Ann. Sci. École Norm. Sup. (4), 30 (1997), 353–366 | DOI | MR

[6] Angiono I. E., “A quantum version of the algebra of distributions of ${\rm SL}_2$”, Publ. Res. Inst. Math. Sci., 54 (2018), 141–161, arXiv: 1607.04869 | DOI | MR

[7] Donkin S., “On tilting modules for algebraic groups”, Math. Z., 212 (1993), 39–60 | DOI | MR

[8] Elias B., “Quantum Satake in type $A$. Part I”, J. Comb. Algebra, 1 (2017), 63–125, arXiv: 1403.5570 | DOI | MR

[9] Elias B., Losev I., Modular representation theory in type A via Soergel bimodules, arXiv: 1701.00560

[10] Erdmann K., “Symmetric groups and quasi-hereditary algebras”, Finite-Dimensional Algebras and Related Topics (Ottawa, ON, 1992), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 424, Kluwer Acad. Publ., Dordrecht, 1994, 123–161 | DOI | MR

[11] James G., “The decomposition matrices of ${\rm GL}_n(q)$ for $n\le 10$”, Proc. London Math. Soc., 60 (1990), 225–265 | DOI | MR

[12] Jensen J. G., “On the character of some modular indecomposable tilting modules for ${\rm SL}_3$”, J. Algebra, 232 (2000), 397–419 | DOI | MR

[13] Jensen L. T., $p$-Kazhdan–Lusztig theory, Ph.D. Thesis, Max Planck Institute for Mathematics, Bonn, 2017

[14] Jensen L. T., Williamson G., “The $p$-canonical basis for Hecke algebras”, Categorification and Higher Representation Theory, Contemp. Math., 683, Amer. Math. Soc., Providence, RI, 2017, 333–361, arXiv: . 1510.01556 | DOI | MR

[15] Libedinsky N., Williamson G., The anti-spherical category, arXiv: 1702.00459

[16] Lusztig G., “Cells in affine Weyl groups. IV”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 297–328 | MR

[17] Lusztig G., “On the character of certain irreducible modular representations”, Represent. Theory, 19 (2015), 3–8, arXiv: 1407.5346 | DOI | MR

[18] Lusztig G., Williamson G., “On the character of certain tilting modules”, Sci. China Math., 61 (2018), 295–298, arXiv: 1502.04904 | DOI | MR

[19] Lusztig G., Xi N. H., “Canonical left cells in affine Weyl groups”, Adv. Math., 72 (1988), 284–288 | DOI | MR

[20] Parker A., “Some remarks on a result of Jensen and tilting modules for ${\rm SL}_3(k)$ and $q-{\rm GL}_3(k)$”, arXiv: 0809.2249

[21] Riche S., Williamson G., “Tilting modules and the $p$-canonical basis”, arXiv: 1512.08296

[22] Soergel W., “Charakterformeln für Kipp–Moduln über Kac–Moody-Algebren”, Represent. Theory, 1 (1997), 115–132 | DOI | MR

[23] Soergel W., “Kazhdan–Lusztig polynomials and a combinatoric for tilting modules”, Represent. Theory, 1 (1997), 83–114 | DOI | MR

[24] Williamson G., “Algebraic representations and constructible sheaves”, Jpn. J. Math., 12 (2017), 211–259, arXiv: 1610.06261 | DOI | MR

[25] Williamson G., Examples of $p$-canonical bases for the anti-spherical module for ${\rm SL}_3$, http://www.maths.usyd.edu.au/u/geordie/pCanA2/

[26] Williamson G., How to calculate many new decomposition numbers for symmetric groups, in preparation