Singular Degenerations of Lie Supergroups of Type $D(2,1;a)$
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The complex Lie superalgebras $\mathfrak{g}$ of type $D(2,1;a)$ – also denoted by $\mathfrak{osp}(4,2;a) $ – are usually considered for “non-singular” values of the parameter $a$, for which they are simple. In this paper we introduce five suitable integral forms of $\mathfrak{g}$, that are well-defined at singular values too, giving rise to “singular specializations” that are no longer simple: this extends the family of simple objects of type $D(2,1;a)$ in five different ways. The resulting five families coincide for general values of $ a$, but are different at “singular” ones: here they provide non-simple Lie superalgebras, whose structure we describe explicitly. We also perform the parallel construction for complex Lie supergroups and describe their singular specializations (or “degenerations”) at singular values of $a$. Although one may work with a single complex parameter $a$, in order to stress the overall $\mathfrak{S}_3$-symmetry of the whole situation, we shall work (following Kaplansky) with a two-dimensional parameter $\sigma = (\sigma_1,\sigma_2,\sigma_3)$ ranging in the complex affine plane $\sigma_1 + \sigma_2 + \sigma_3 = 0$.
Keywords: Lie superalgebras; Lie supergroups; singular degenerations; contractions.
@article{SIGMA_2018_14_a136,
     author = {Kenji Iohara and Fabio Gavarini},
     title = {Singular {Degenerations} of {Lie} {Supergroups} of {Type} $D(2,1;a)$},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a136/}
}
TY  - JOUR
AU  - Kenji Iohara
AU  - Fabio Gavarini
TI  - Singular Degenerations of Lie Supergroups of Type $D(2,1;a)$
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a136/
LA  - en
ID  - SIGMA_2018_14_a136
ER  - 
%0 Journal Article
%A Kenji Iohara
%A Fabio Gavarini
%T Singular Degenerations of Lie Supergroups of Type $D(2,1;a)$
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a136/
%G en
%F SIGMA_2018_14_a136
Kenji Iohara; Fabio Gavarini. Singular Degenerations of Lie Supergroups of Type $D(2,1;a)$. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a136/

[1] Balduzzi L., Carmeli C., Fioresi R., “A comparison of the functors of points of supermanifolds”, J. Algebra Appl., 12 (2013), 1250152, 41 pp., arXiv: 0902.1824 | DOI | MR | Zbl

[2] Bouarroudj S., Grozman P., Leites D., “Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix”, SIGMA, 5 (2009), 060, 63 pp., arXiv: 0710.5149 | DOI | MR | Zbl

[3] Chapovalov D., Chapovalov M., Lebedev A., Leites D., “The classification of almost affine (hyperbolic) Lie superalgebras”, J. Nonlinear Math. Phys., 17:1 (2010), 103–161, arXiv: 0906.1860 | DOI | MR | Zbl

[4] Deligne P., Morgan J. W., “Notes on supersymmetry (following Joseph Bernstein)”, Quantum Fields and Strings: a Course for Mathematicians (Princeton, NJ, 1996/1997), v. 1, 2, Amer. Math. Soc., Providence, RI, 1999, 41–97 | MR | Zbl

[5] Dooley A. H., Rice J. W., “On contractions of semisimple Lie groups”, Trans. Amer. Math. Soc., 289 (1985), 185–202 | DOI | MR | Zbl

[6] Fioresi R., Gavarini F., Chevalley supergroups, Mem. Amer. Math. Soc., 215, 2012, vi+64 pp., arXiv: 0808.0785 | DOI | MR

[7] Gavarini F., “Chevalley supergroups of type $D(2,1;a)$”, Proc. Edinb. Math. Soc., 57 (2014), 465–491, arXiv: 1006.0464 | DOI | MR | Zbl

[8] Gavarini F., “Global splittings and super Harish-Chandra pairs for affine supergroups”, Trans. Amer. Math. Soc., 368 (2016), 3973–4026, arXiv: 1308.0462 | DOI | MR | Zbl

[9] Gavarini F., Lie supergroups vs. super Harish-Chandra pairs: a new equivalence, arXiv: 1609.02844 | MR

[10] Iohara K., Koga Y., “Central extensions of Lie superalgebras”, Comment. Math. Helv., 76 (2001), 110–154 | DOI | MR | Zbl

[11] Kac V. G., “Classification of simple algebraic supergroups”, Russian Math. Surveys, 32:3 (1977), 214–215 (in Russian)

[12] Kac V. G., “Lie superalgebras”, Adv. Math., 26 (1977), 8–96 | DOI | MR | Zbl

[13] Kaplansky I., Graded Lie algebras I, University of Chicago Report, }, 1976 {http://www1.osu.cz/z̃usmanovich/links/files/kaplansky/

[14] Kaplansky I., Graded Lie algebras II, University of Chicago Report, , 1976 http://www1.osu.cz/z̃usmanovich/links/files/kaplansky/

[15] Scheunert M., The theory of Lie superalgebras. An introduction, Lecture Notes in Math., 716, Springer, Berlin, 1979 | DOI | MR | Zbl

[16] Serganova V., “On generalizations of root systems”, Comm. Algebra, 24 (1996), 4281–4299 | DOI | MR | Zbl

[17] Vaintrob A. Yu., “Deformation of complex superspaces and coherent sheaves on them”, J. Sov. Math., 51 (1990), 2140–2188 | DOI

[18] Veisfeiler B. Ju., Kac V. G., “Exponentials in Lie algebras of characteristic $p$”, Math. USSR Izv., 5 (1971), 777–803 | DOI | MR