@article{SIGMA_2018_14_a135,
author = {Howard S. Cohl and Thinh H. Dang and T. M. Dunster},
title = {Fundamental {Solutions} and {Gegenbauer} {Expansions} of {Helmholtz} {Operators} in {Riemannian} {Spaces} of {Constant} {Curvature}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a135/}
}
TY - JOUR AU - Howard S. Cohl AU - Thinh H. Dang AU - T. M. Dunster TI - Fundamental Solutions and Gegenbauer Expansions of Helmholtz Operators in Riemannian Spaces of Constant Curvature JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a135/ LA - en ID - SIGMA_2018_14_a135 ER -
%0 Journal Article %A Howard S. Cohl %A Thinh H. Dang %A T. M. Dunster %T Fundamental Solutions and Gegenbauer Expansions of Helmholtz Operators in Riemannian Spaces of Constant Curvature %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a135/ %G en %F SIGMA_2018_14_a135
Howard S. Cohl; Thinh H. Dang; T. M. Dunster. Fundamental Solutions and Gegenbauer Expansions of Helmholtz Operators in Riemannian Spaces of Constant Curvature. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a135/
[1] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[2] Beltrami E., “Essai d'interprétation de la géométrie noneuclidéenne. Trad. par J. Hoüel”, Ann. Sci. école Norm. Sup., 6 (1869), 251–288 | DOI | MR
[3] Chapling R., “A hypergeometric integral with applications to the fundamental solution of Laplace's equation on hyperspheres”, SIGMA, 12 (2016), 079, 20 pp., arXiv: 1508.06689 | DOI | MR | Zbl
[4] Cialdea A., Lanzara F., Ricci P. E. (eds.), Analysis, partial differential equations and applications. The Vladimir Maz'ya anniversary volume, Operator Theory: Advances and Applications, 193, Birkhäuser Verlag, Basel, 2009 | DOI | MR | Zbl
[5] Cohl H. S., “Fundamental solution of Laplace's equation in hyperspherical geometry”, SIGMA, 7 (2011), 108, 14 pp., arXiv: 1108.3679 | DOI | MR | Zbl
[6] Cohl H. S., Kalnins E. G., “Fourier and Gegenbauer expansions for a fundamental solution of the Laplacian in the hyperboloid model of hyperbolic geometry”, J. Phys. A: Math. Gen., 45 (2012), 145206, 32 pp., arXiv: 1105.0386 | DOI | MR | Zbl
[7] Cohl H. S., Palmer R. M., “Fourier and Gegenbauer expansions for a fundamental solution of Laplace's equation in hyperspherical geometry”, SIGMA, 11 (2015), 015, 23 pp., arXiv: 1405.4847 | DOI | MR | Zbl
[8] Dunster T. M., “Conical functions with one or both parameters large”, Proc. Roy. Soc. Edinburgh Sect. A, 119 (1991), 311–327 | DOI | MR | Zbl
[9] Dunster T. M., “Conical functions of purely imaginary order and argument”, Proc. Roy. Soc. Edinburgh Sect. A, 143 (2013), 929–955 | DOI | MR | Zbl
[10] Durand L., Fishbane P. M., Simmons Jr. L.M., “Expansion formulas and addition theorems for Gegenbauer functions”, J. Math. Phys., 17 (1976), 1933–1948 | DOI | MR | Zbl
[11] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981 | MR
[12] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, 7th ed., Elsevier/Academic Press, Amsterdam, 2007 | MR | Zbl
[13] Grigor'yan A., Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, Amer. Math. Soc., Providence, RI; International Press, Boston, MA, 2009 | MR | Zbl
[14] Grosche C., Pogosyan G. S., Sissakian A. N., “Path-integral approach for superintegrable potentials on the three-dimensional hyperboloid”, Phys. Part. Nuclei, 28 (1997), 486–519 | DOI
[15] Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and separation of variables. The $n$-dimensional sphere”, J. Math. Phys., 40 (1999), 1549–1573 | DOI | MR | Zbl
[16] Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and the separation of variables: interbase expansions”, J. Phys. A: Math. Gen., 34 (2001), 521–554 | DOI | MR | Zbl
[17] Koekoek R., Lesky P. A., Swarttouw R. F., “Hypergeometric orthogonal polynomials and their $q$-analogues”, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl
[18] Kythe P. K., Fundamental solutions for differential operators and applications, Birkhäuser Boston, Inc., Boston, MA, 1996 | DOI | MR | Zbl
[19] Lee J. M., Riemannian manifolds: an introduction to curvature, Graduate Texts in Mathematics, 176, Springer-Verlag, New York, 1997 | DOI | MR | Zbl
[20] Liu H., Ryan J., “Clifford analysis techniques for spherical PDE”, J. Fourier Anal. Appl., 8 (2002), 535–563 | DOI | MR | Zbl
[21] Livio M., Is God a mathematician?, Simon Schuster, New York, 2009 | MR
[22] Magnus W., Oberhettinger F., Soni R. P., Formulas and theorems for the special functions of mathematical physics, Die Grundlehren der mathematischen Wissenschaften, 52, 3rd ed., Springer-Verlag, New York, 1966 | DOI | MR | Zbl
[23] Maier R. S., “Legendre functions of fractional degree: transformations and evaluations”, Proc. Roy. Soc. London Ser. A, 472 (2016), 20160097, 29 pp., arXiv: 1602.03070 | DOI | MR | Zbl
[24] Matsumoto H., “Closed form formulae for the heat kernels and the Green functions for the Laplacians on the symmetric spaces of rank one”, Bull. Sci. Math., 125 (2001), 553–581 | DOI | MR | Zbl
[25] Olevskiĭ M. N., “Triorthogonal systems in spaces of constant curvature in which the equation $\Delta_2u+\lambda u=0$ allows a complete separation of variables”, Mat. Sb., 27, 1950, 379–426 | MR | Zbl
[26] Olver F. W. J., Asymptotics and special functions, AKP Classics, AKPeters, Ltd., Wellesley, MA, 1997 | MR | Zbl
[27] Olver F. W. J., Olde Daalhuis A. B., Lozier D. W., Schneider B. I., Boisvert R. F., Clark C. W., Miller B. R., Saunders B. V. (eds.), NIST digital library of mathematical functions, Release 1.0.21 of 2018-12-15, http://dlmf.nist.gov
[28] Pogosyan G. S., Winternitz P., “Separation of variables and subgroup bases on $n$-dimensional hyperboloids”, J. Math. Phys., 43 (2002), 3387–3410 | DOI | MR | Zbl
[29] Schot S. H., “Eighty years of Sommerfeld's radiation condition”, Historia Math., 19 (1992), 385–401 | DOI | MR | Zbl
[30] Sommerfeld A., Partial differential equations in physics, Academic Press, Inc., New York, N.Y., 1949 | MR | Zbl
[31] Szmytkowski R., “Closed forms of the Green's function and the generalized Green's function for the Helmholtz operator on the $N$-dimensional unit sphere”, J. Phys. A: Math. Theor., 40 (2007), 995–1009 | DOI | MR | Zbl
[32] Thurston W. P., Three-dimensional geometry and topology, v. 1, Princeton Mathematical Series, 35, Princeton University Press, Princeton, NJ, 1997 | MR | Zbl
[33] Titchmarsh E. C., The theory of functions, 2nd ed., Oxford University Press, Oxford, 1939 | MR | Zbl
[34] Trudeau R. J., The non-Euclidean revolution, Birkhäuser Boston, Inc., Boston, MA, 1987 | DOI | MR | Zbl
[35] Vilenkin N. J., Special functions and the theory of group representations, Mathematical Monographs, 22, Amer. Math. Soc., Providence, R.I., 1968 | MR | Zbl
[36] Watson G. N., A treatise on the theory of Bessel functions, 2nd ed., Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1944 | MR | Zbl
[37] Wong R., Asymptotic approximations of integrals, Classics in Applied Mathematics, 34, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001 | DOI | MR