@article{SIGMA_2018_14_a134,
author = {Micha{\l} J\'o\'zwikowski and Miko{\l}aj Rotkiewicz},
title = {Higher-Order {Analogs} of {Lie} {Algebroids} via {Vector} {Bundle} {Comorphisms}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a134/}
}
TY - JOUR AU - Michał Jóźwikowski AU - Mikołaj Rotkiewicz TI - Higher-Order Analogs of Lie Algebroids via Vector Bundle Comorphisms JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a134/ LA - en ID - SIGMA_2018_14_a134 ER -
Michał Jóźwikowski; Mikołaj Rotkiewicz. Higher-Order Analogs of Lie Algebroids via Vector Bundle Comorphisms. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a134/
[1] Abrunheiro L., Colombo L., “Lagrangian Lie subalgebroids generating dynamics for second-order mechanical systems on Lie algebroids”, Mediterr. J. Math., 15 (2018), 57, 19 pp., arXiv: 1803.00059 | DOI | MR | Zbl
[2] Bourbaki N., Eléments de mathématique: variété différentielles et analytiques, v. XXIV, Hermann, Paris, 1971 | MR
[3] Bruce A. J., Grabowska K., Grabowski J., “Graded bundles in the category of Lie groupoids”, SIGMA, 11 (2015), 090, 25 pp., arXiv: 1502.06092 | DOI | MR | Zbl
[4] Bruce A. J., Grabowska K., Grabowski J., “Higher order mechanics on graded bundles”, J. Phys. A: Math. Theor., 48 (2015), 205203, 32 pp., arXiv: 1412.2719 | DOI | MR | Zbl
[5] Bruce A. J., Grabowska K., Grabowski J., “Linear duals of graded bundles and higher analogues of (Lie) algebroids”, J. Geom. Phys., 101 (2016), 71–99, arXiv: 1409.0439 | DOI | MR | Zbl
[6] Bruce A. J., Grabowski J., Rotkiewicz M., “Polarisation of graded bundles”, SIGMA, 12 (2016), 106, 30 pp., arXiv: 1512.02345 | DOI | MR | Zbl
[7] Cattaneo A. S., Dherin B., Weinstein A., “Integration of {L}ie algebroid comorphisms”, Port. Math., 70 (2013), 113–144, arXiv: 1210.4443 | DOI | MR | Zbl
[8] Colombo L., “Second-order constrained variational problems on Lie algebroids: applications to optimal control”, J. Geom. Mech., 9 (2017), 1–45, arXiv: 1701.04772 | DOI | MR | Zbl
[9] Colombo L., Martín de Diego D., A variational and geometric approach for the second order Euler–Poincaré equations, Lecture Notes, Zaragoza, 2011
[10] Colombo L., Martín de Diego D., “Higher-order variational problems on Lie groups and optimal control applications”, J. Geom. Mech., 6 (2014), 451–478, arXiv: 1104.3221 | DOI | MR | Zbl
[11] Cortés J., de León M., Marrero J. C., Martín de Diego D., Martínez E., “A survey of Lagrangian mechanics and control on Lie algebroids and groupoids”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 509–558, arXiv: math-ph/0511009 | DOI | MR | Zbl
[12] de León M., Marrero J. C., Martínez E., “Lagrangian submanifolds and dynamics on Lie algebroids”, J. Phys. A: Math. Gen., 38 (2005), R241–R308, arXiv: math.DG/0407528 | DOI | MR | Zbl
[13] Grabowska K., Grabowski J., “Variational calculus with constraints on general algebroids”, J. Phys. A: Math. Theor., 41 (2008), 175204, 25 pp., arXiv: 0712.2766 | DOI | MR | Zbl
[14] Grabowska K., Urbański P., Grabowski J., “Geometrical mechanics on algebroids”, Int. J. Geom. Methods Mod. Phys., 3 (2006), 559–575, arXiv: math-ph/0509063 | DOI | MR
[15] Grabowski J., “Modular classes of skew algebroid relations”, Transform. Groups, 17 (2012), 989–1010, arXiv: 1108.2366 | DOI | MR | Zbl
[16] Grabowski J., Rotkiewicz M., “Higher vector bundles and multi-graded symplectic manifolds”, J. Geom. Phys., 59 (2009), 1285–1305, arXiv: math.DG/0702772 | DOI | MR | Zbl
[17] Grabowski J., Rotkiewicz M., “Graded bundles and homogeneity structures”, J. Geom. Phys., 62 (2012), 21–36, arXiv: 1102.0180 | DOI | MR | Zbl
[18] Grabowski J., Urbański P., “Lie algebroids and Poisson–Nijenhuis structures”, Rep. Math. Phys., 40 (1997), 195–208, arXiv: dg-ga/9710007 | DOI | MR | Zbl
[19] Grabowski J., Urbański P., “Algebroids – general differential calculi on vector bundles”, J. Geom. Phys., 31 (1999), 111–141, arXiv: math.DG/9909174 | DOI | MR | Zbl
[20] Guillemin V., Sternberg S., Geometric asymptotics, Mathematical Surveys, 14, Amer. Math. Soc., Providence, R.I., 1977 | MR | Zbl
[21] Higgins P. J., Mackenzie K., “Algebraic constructions in the category of Lie algebroids”, J. Algebra, 129 (1990), 194–230 | DOI | MR | Zbl
[22] Higgins P. J., Mackenzie K. C. H., “Duality for base-changing morphisms of vector bundles, modules, Lie algebroids and Poisson structures”, Math. Proc. Cambridge Philos. Soc., 114 (1993), 471–488 | DOI | MR | Zbl
[23] Huebschmann J., “Poisson cohomology and quantization”, J. Reine Angew. Math., 408 (1990), 57–113 | DOI | MR | Zbl
[24] Jóźwikowski M., Prolongations vs. Tulczyjew triples in geometric mechanics, arXiv: 1712.09858
[25] Jóźwikowski M., Rotkiewicz M., Prototypes of higher algebroids with applications to variational calculus, arXiv: 1306.3379
[26] Jóźwikowski M., Rotkiewicz M., “Bundle-theoretic methods for higher-order variational calculus”, J. Geom. Mech., 6 (2014), 99–120, arXiv: 1306.3097 | DOI | MR
[27] Jóźwikowski M., Rotkiewicz M., “Models for higher algebroids”, J. Geom. Mech., 7 (2015), 317–359 | DOI | MR
[28] Kolář I., Michor P. W., Slovák J., Natural operations in differential geometry, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl
[29] Konieczna K., Urbański P., “Double vector bundles and duality”, Arch. Math. (Brno), 35 (1999), 59–95, arXiv: dg-ga/9710014 | MR | Zbl
[30] Kouotchop Wamba P. M., Ntyam A., “Tangent lifts of higher order of multiplicative Dirac structures”, Arch. Math. (Brno), 49 (2013), 87–104 | DOI | MR | Zbl
[31] Kruglikov B., Lychagin V., “Global Lie–Tresse theorem”, Selecta Math. (N.S.), 22 (2016), 1357–1411, arXiv: 1111.5480 | DOI | MR | Zbl
[32] Mackenzie K. C. H., “Double Lie algebroids and second-order geometry. I”, Adv. Math., 94 (1992), 180–239 | DOI | MR | Zbl
[33] Mackenzie K. C. H., “Duality and triple structures”, The Breadth of Symplectic and Poisson Geometry, Progr. Math., 232, Birkhäuser Boston, Boston, MA, 2005, 455–481, arXiv: math.SG/0406267 | DOI | MR | Zbl
[34] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[35] Mackenzie K. C. H., “Ehresmann doubles and Drinfel'd doubles for Lie algebroids and Lie bialgebroids”, J. Reine Angew. Math., 658 (2011), 193–245, arXiv: math.DG/0611799 | DOI | MR | Zbl
[36] Martínez E., “Geometric formulation of mechanics on Lie algebroids”, Proceedings of the VIII Fall Workshop on Geometry and Physics (Medina del Campo, 1999), Publ. R. Soc. Mat. Esp., 2, R. Soc. Mat. Esp., Madrid, 2001, 209–222 (Spanish) | MR | Zbl
[37] Martínez E., “Lagrangian mechanics on Lie algebroids”, Acta Appl. Math., 67 (2001), 295–320 | DOI | MR | Zbl
[38] Martínez E., “Variational calculus on Lie algebroids”, ESAIM Control Optim. Calc. Var., 14 (2008), 356–380, arXiv: math-ph/0603028 | DOI | MR | Zbl
[39] Martínez E., “Higher-order variational calculus on Lie algebroids”, J. Geom. Mech., 7 (2015), 81–108, arXiv: 1501.06520 | DOI | MR | Zbl
[40] Morimoto A., “Liftings of tensor fields and connections to tangent bundles of higher order”, Nagoya Math. J., 40 (1970), 99–120 | DOI | MR | Zbl
[41] Pradines J., Fibres vectoriels doubles et calcul des jets non holonomes, Esquisses Mathématiques, 29, Université d'Amiens, U.E.R. de Mathématiques, Amiens, 1977 | MR
[42] Rotkiewicz M., On structure of higher algebroids, in preparation
[43] Saunders D. J., “Prolongations of Lie groupoids and Lie algebroids”, Houston J. Math., 30 (2004), 637–655 | MR | Zbl
[44] Tulczyjew W. M., “Les sous-variétés lagrangiennes et la dynamique hamiltonienne”, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), 15–18 | MR | Zbl
[45] Tulczyjew W. M., “Les sous-variétés lagrangiennes et la dynamique lagrangienne”, C. R. Acad. Sci. Paris Sér. A-B, 283 (1976), 675–678 | MR | Zbl
[46] Vaĭntrob A. Y., “Lie algebroids and homological vector fields”, Russian Math. Surveys, 52 (1997), 428–429 | DOI | MR
[47] Voronov T. T., “Graded manifolds and Drinfeld doubles for Lie bialgebroids”, Quantization, Poisson Brackets and beyond (Manchester, 2001), Contemp. Math., 315, Amer. Math. Soc., Providence, RI, 2002, 131–168, arXiv: math.DG/0105237 | DOI | MR | Zbl
[48] Voronov T. T., “$Q$-manifolds and higher analogs of Lie algebroids”, XXIX Workshop on Geometric Methods in Physics, AIP Conf. Proc., 1307, Amer. Inst. Phys., Melville, NY, 2010, 191–202, arXiv: 1010.2503 | DOI | MR | Zbl
[49] Voronov T. T., “On a non-abelian Poincaré lemma”, Proc. Amer. Math. Soc., 140 (2012), 2855–2872, arXiv: 0905.0287 | DOI | MR | Zbl
[50] Voronov T. T., “$Q$-manifolds and Mackenzie theory”, Comm. Math. Phys., 315 (2012), 279–310, arXiv: 1206.3622 | DOI | MR | Zbl
[51] Ševera P., “Some title containing the words “homotopy” and “symplectic”, e.g. this one”, Travaux mathématiques, 16, University of Luxembourg, Luxembourg, 2005, 121–137, arXiv: math.SG/0105080 | MR
[52] Weinstein A., “Lagrangian mechanics and groupoids”, Mechanics Day (Waterloo, ON, 1992), Fields Inst. Commun., 7, Amer. Math. Soc., Providence, RI, 1996, 207–231 | MR | Zbl
[53] Zakrzewski S., “Quantum and classical pseudogroups. I Union pseudogroups and their quantization”, Comm. Math. Phys., 134 (1990), 347–370 | DOI | MR | Zbl
[54] Zakrzewski S., “Quantum and classical pseudogroups. II Differential and symplectic pseudogroups”, Comm. Math. Phys., 134 (1990), 371–395 | DOI | MR | Zbl