@article{SIGMA_2018_14_a133,
author = {Pablo Gonzalez Pagotto},
title = {A {Product} on {Double} {Cosets} of $B_\infty$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a133/}
}
Pablo Gonzalez Pagotto. A Product on Double Cosets of $B_\infty$. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a133/
[1] Artin E., “Braids and permutations”, Ann. of Math., 48 (1947), 643–649 | DOI | MR | Zbl
[2] Artin E., “Theory of braids”, Ann. of Math., 48 (1947), 101–126 | DOI | MR | Zbl
[3] Birman J. S., Braids, links, and mapping class groups, Annals of Mathematics Studies, 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974 | MR
[4] Birman J. S., Brendle T. E., “Braids: a survey”, Handbook of Knot Theory, Elsevier B. V., Amsterdam, 2005, 19–103, arXiv: math.GT/0409205 | DOI | MR | Zbl
[5] Dehornoy P., “A fast method for comparing braids”, Adv. Math., 125 (1997), 200–235 | DOI | MR | Zbl
[6] Geck M., Pfeiffer G., Characters of finite Coxeter groups and Iwahori–Hecke algebras, London Mathematical Society Monographs New Series, 21, The Clarendon Press, Oxford University Press, New York, 2000 | MR
[7] González-Meneses J., “Geometric embeddings of braid groups do not merge conjugacy classes”, Bol. Soc. Mat. Mex., 20 (2014), 297–305 | DOI | MR | Zbl
[8] Neretin Yu. A., Categories of symmetries and infinite-dimensional groups, London Mathematical Society Monographs, New Series, 16, The Clarendon Press, Oxford University Press, New York, 1996 | MR
[9] Neretin Yu. A., On multiplication of double cosets for ${\rm GL}(\infty)$ over a finite field, arXiv: 1310.1596 | MR
[10] Neretin Yu. A., “Sphericity and multiplication of double cosets for infinite-dimensional classical groups”, Funct. Anal. Appl., 45 (2011), 225–239, arXiv: 1101.4759 | DOI | MR | Zbl
[11] Neretin Yu. A., “Infinite tri-symmetric group, multiplication of double cosets, and checker topological field theories”, Int. Math. Res. Not., 2012 (2012), 501–523, arXiv: 0909.4739 | DOI | MR | Zbl
[12] Neretin Yu. A., “Infinite symmetric groups and combinatorial constructions of topological field theory type”, Russian Math. Surveys, 70 (2015), 715–773, arXiv: 1502.03472 | DOI | MR | Zbl
[13] Neretin Yu. A., “Several remarks on groups of automorphisms of free groups”, J. Math. Sci., 215 (2016), 748–754, arXiv: 1306.6035 | DOI | MR | Zbl
[14] Neretin Yu. A., “Combinatorial encodings of infinite symmetric groups and descriptions of semigroups of double cosets”, J. Math. Sci., 232 (2018), 138–156, arXiv: 1106.1161 | DOI | MR | Zbl
[15] Okounkov A. Yu., “Thoma's theorem and representations of the infinite bisymmetric group”, Funct. Anal. Appl., 28 (1994), 100–107 | DOI | MR | Zbl
[16] Ol'shankii G. I., “Infinite-dimensional classical groups of finite $R$-rank: description of representations and asymptotic theory”, Funct. Anal. Appl., 18 (1984), 22–34 | DOI
[17] Ol'shankii G. I., “Unitary representations of the group ${\rm SO}_{\rm o}(\infty, \infty)$ as limits of unitary representations of the groups ${\rm SO}_{\rm o}(n, \infty)$ as $n \rightarrow \infty$”, Funct. Anal. Appl., 20 (1986), 292–301 | DOI
[18] Ol'shankii G. I., “Method of holomorphic extensions in the theory of unitary representations of infinite-dimensional classical groups”, Funct. Anal. Appl., 22 (1988), 273–285 | DOI | MR
[19] Ol'shankii G. I., “Unitary representations of $(G,K)$-pairs connected with the infinite symmetric group $S(\infty)$”, Leningrad Math. J., 1 (1990), 983–1014 | MR
[20] Ol'shankii G. I., “Unitary representations of infinite-dimensional pairs $(G,K)$ and the formalism of R Howe”, Representation of Lie Groups and Related Topics, Adv. Stud. Contemp. Math., 7, Gordon and Breach, New York, 1990, 269–463 | MR
[21] Ol'shankii G. I., “On semigroups related to infinite-dimensional groups”, Topics in representation theory, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991, 67–101 | MR