Elliptic Dynamical Quantum Groups and Equivariant Elliptic Cohomology
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We define an elliptic version of the stable envelope of Maulik and Okounkov for the equivariant elliptic cohomology of cotangent bundles of Grassmannians. It is a version of the construction proposed by Aganagic and Okounkov and is based on weight functions and shuffle products. We construct an action of the dynamical elliptic quantum group associated with $\mathfrak{gl}_2$ on the equivariant elliptic cohomology of the union of cotangent bundles of Grassmannians. The generators of the elliptic quantum groups act as difference operators on sections of admissible bundles, a notion introduced in this paper.
Keywords: elliptic cohomology; elliptic quantum group; elliptic stable envelope.
@article{SIGMA_2018_14_a131,
     author = {Giovanni Felder and Rich\'ard Rim\'anyi and Alexander Varchenko},
     title = {Elliptic {Dynamical} {Quantum} {Groups} and {Equivariant} {Elliptic} {Cohomology}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a131/}
}
TY  - JOUR
AU  - Giovanni Felder
AU  - Richárd Rimányi
AU  - Alexander Varchenko
TI  - Elliptic Dynamical Quantum Groups and Equivariant Elliptic Cohomology
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a131/
LA  - en
ID  - SIGMA_2018_14_a131
ER  - 
%0 Journal Article
%A Giovanni Felder
%A Richárd Rimányi
%A Alexander Varchenko
%T Elliptic Dynamical Quantum Groups and Equivariant Elliptic Cohomology
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a131/
%G en
%F SIGMA_2018_14_a131
Giovanni Felder; Richárd Rimányi; Alexander Varchenko. Elliptic Dynamical Quantum Groups and Equivariant Elliptic Cohomology. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a131/

[1] Aganagic M., Okounkov A., Elliptic stable envelope, arXiv: 1604.00423

[2] Etingof P., Varchenko A., “Exchange dynamical quantum groups”, Comm. Math. Phys., 205 (1999), 19–52 | DOI | MR | Zbl

[3] Felder G., “Conformal field theory and integrable systems associated to elliptic curves”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 1247–1255, arXiv: hep-th/9407154 | DOI | Zbl

[4] Felder G., Tarasov V., Varchenko A., “Solutions of the elliptic qKZB equations and Bethe ansatz. I”, Topics in Singularity Theory, Amer. Math. Soc. Transl. Ser. 2, 180, Amer. Math. Soc., Providence, RI, 1997, 45–75, arXiv: q-alg/9606005 | DOI | MR | Zbl

[5] Felder G., Varchenko A., “On representations of the elliptic quantum group $E_{\tau,\eta}({\rm sl}_2)$”, Comm. Math. Phys., 181 (1996), 741–761, arXiv: q-alg/9601003 | DOI | MR | Zbl

[6] Ganter N., “The elliptic Weyl character formula”, Compos. Math., 150 (2014), 1196–1234, arXiv: 1206.0528 | DOI | MR | Zbl

[7] Ginzburg V., Kapranov M., Vasserot E., Elliptic algebras and equivariant elliptic cohomology I, arXiv: q-alg/9505012

[8] Gorbounov V., Rimányi R., Tarasov V., Varchenko A., “Quantum cohomology of the cotangent bundle of a flag variety as a Yangian Bethe algebra”, J. Geom. Phys., 74 (2013), 56–86, arXiv: 1204.5138 | DOI | MR | Zbl

[9] Goresky M., Kottwitz R., MacPherson R., “Equivariant cohomology, Koszul duality, and the localization theorem”, Invent. Math., 131 (1998), 25–83 | DOI | MR | Zbl

[10] Grojnowski I., “Delocalised equivariant elliptic cohomology”, Elliptic Cohomology, London Math. Soc. Lecture Note Ser., 342, Cambridge University Press, Cambridge, 2007, 114–121 | DOI | MR | Zbl

[11] Konno H., Elliptic quantum groups $U_{q,p}(\widehat{{\mathfrak{gl}}}_N)$ and $E_{q,p}(\widehat{{\mathfrak{gl}}}_N)$, arXiv: 1603.04129 | MR

[12] Maulik D., Okounkov A., Quantum groups and quantum cohomology, arXiv: 1211.1287

[13] Mumford D., Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, Oxford University Press, London, 1970 | MR | Zbl

[14] Rimányi R., Tarasov V., Varchenko A., “Partial flag varieties, stable envelopes, and weight functions”, Quantum Topol., 6 (2015), 333–364, arXiv: 1212.6240 | DOI | MR | Zbl

[15] Rimányi R., Tarasov V., Varchenko A., “Trigonometric weight functions as $K$-theoretic stable envelope maps for the cotangent bundle of a flag variety”, J. Geom. Phys., 94 (2015), 81–119, arXiv: 1411.0478 | DOI | MR | Zbl

[16] Rimányi R., Varchenko A., “Dynamical Gelfand–Zetlin algebra and equivariant cohomology of Grassmannians”, J. Knot Theory Ramifications, 25 (2016), 1642013, 29 pp., arXiv: 1510.03625 | DOI | MR | Zbl

[17] Rimányi R., Varchenko A., “Equivariant Chern–Schwartz–MacPherson classes in partial flag varieties: interpolation and formulae”, Schubert Varieties, Equivariant Cohomology and Characteristic Classes, IMPANGA 15, EMS Ser. Congr. Rep., eds. J. Buczyński, M. Michalek, E. Postingel, Eur. Math. Soc., Zürich, 2018, 225–235, arXiv: 1509.09315 | DOI | MR | Zbl

[18] Roşu I., “Equivariant $K$-theory and equivariant cohomology (with an appendix by Allen Knutson and Ioanid Roşu)”, Math. Z., 243 (2003), 423–448, arXiv: math.AT/9912088 | DOI | MR | Zbl

[19] Tarasov V., Varchenko A., “Geometry of $q$-hypergeometric functions as a bridge between Yangians and quantum affine algebras”, Invent. Math., 128 (1997), 501–588, arXiv: q-alg/9604011 | DOI | MR | Zbl

[20] Tarasov V., Varchenko A., Geometry of $q$-hypergeometric functions, quantum affine algebras and elliptic quantum groups, Astérisque, 246, 1997, vi+135 pp., arXiv: q-alg/9703044 | MR | Zbl