Categorical Tori
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give explicit and elementary constructions of the categorical extensions of a torus by the circle and discuss an application to loop group extensions. Examples include maximal tori of simple and simply connected compact Lie groups and the tori associated to the Leech and Niemeyer lattices. We obtain the extraspecial 2-groups as the isomorphism classes of categorical fixed points under an involution action.
Keywords: categorification; Lie group cohomology.
@article{SIGMA_2018_14_a13,
     author = {Nora Ganter},
     title = {Categorical {Tori}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a13/}
}
TY  - JOUR
AU  - Nora Ganter
TI  - Categorical Tori
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a13/
LA  - en
ID  - SIGMA_2018_14_a13
ER  - 
%0 Journal Article
%A Nora Ganter
%T Categorical Tori
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a13/
%G en
%F SIGMA_2018_14_a13
Nora Ganter. Categorical Tori. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a13/

[1] Baez J. C., Huerta J., “An invitation to higher gauge theory”, Gen. Relativity Gravitation, 43 (2011), 2335–2392, arXiv: 1003.4485 | DOI | MR

[2] Baez J. C., Stevenson D., Crans A. S., Schreiber U., “From loop groups to 2-groups”, Homology Homotopy Appl., 9 (2007), 101–135, arXiv: math.QA/0504123 | DOI | MR

[3] Brylinski J.-L., Loop spaces, characteristic classes and geometric quantization, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008 | DOI | MR

[4] Brylinski J.-L., McLaughlin D. A., “The geometry of degree-$4$ characteristic classes and of line bundles on loop spaces. II”, Duke Math. J., 83 (1996), 105–139 | DOI | MR

[5] Carey A. L., Johnson S., Murray M. K., Stevenson D., Wang B.-L., “Bundle gerbes for Chern–Simons and Wess–Zumino–Witten theories”, Comm. Math. Phys., 259 (2005), 577–613, arXiv: math.DG/0410013 | DOI | MR

[6] Chern S. S., Simons J., “Characteristic forms and geometric invariants”, Ann. of Math., 99 (1974), 48–69 | DOI | MR

[7] Conway J. H., Sloane N. J. A., Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, 3rd ed., Springer-Verlag, New York, 1999 | DOI | MR

[8] Johnson-Freyd T., Treumann D., ${H}^4({\rm Co}_0; Z)= Z/24$, arXiv: 1707.07587

[9] Murray M. K., Roberts D. M., Stevenson D., Vozzo R. F., “Equivariant bundle gerbes”, Adv. Theor. Math. Phys., 21 (2017), 921–975, arXiv: 1506.07931 | DOI | MR

[10] Noohi B., “Notes on 2-groupoids, 2-groups and crossed modules”, Homology Homotopy Appl., 9 (2007), 75–106, arXiv: math.CT/0512106 | DOI | MR

[11] Pressley A., Segal G., Loop groups, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986 | MR

[12] Schommer-Pries C. J., “Central extensions of smooth 2-groups and a finite-dimensional string 2-group”, Geom. Topol., 15 (2011), 609–676, arXiv: 0911.2483 | DOI | MR

[13] Tits J., “Le Monstre (d'après R. Griess, B. Fischer et al.)”, Astérisque, 121–122, 1985, 105–122 | MR

[14] Wagemann F., Wockel C., “A cocycle model for topological and Lie group cohomology”, Trans. Amer. Math. Soc., 367 (2015), 1871–1909, arXiv: 1110.3304 | DOI | MR

[15] Waldorf K., “Multiplicative bundle gerbes with connection”, Differential Geom. Appl., 28 (2010), 313–340, arXiv: 0804.4835 | DOI | MR

[16] Waldorf K., “A construction of string 2-group models using a transgression-regression technique”, Analysis, Geometry and Quantum Field Theory, Contemp. Math., 584, Amer. Math. Soc., Providence, RI, 2012, 99–115, arXiv: 1201.5052 | DOI | MR

[17] Waldorf K., “Transgression to loop spaces and its inverse, II: Gerbes and fusion bundles with connection”, Asian J. Math., 20 (2016), 59–115, arXiv: 1004.0031 | DOI | MR