@article{SIGMA_2018_14_a13,
author = {Nora Ganter},
title = {Categorical {Tori}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a13/}
}
Nora Ganter. Categorical Tori. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a13/
[1] Baez J. C., Huerta J., “An invitation to higher gauge theory”, Gen. Relativity Gravitation, 43 (2011), 2335–2392, arXiv: 1003.4485 | DOI | MR
[2] Baez J. C., Stevenson D., Crans A. S., Schreiber U., “From loop groups to 2-groups”, Homology Homotopy Appl., 9 (2007), 101–135, arXiv: math.QA/0504123 | DOI | MR
[3] Brylinski J.-L., Loop spaces, characteristic classes and geometric quantization, Modern Birkhäuser Classics, Birkhäuser Boston, Inc., Boston, MA, 2008 | DOI | MR
[4] Brylinski J.-L., McLaughlin D. A., “The geometry of degree-$4$ characteristic classes and of line bundles on loop spaces. II”, Duke Math. J., 83 (1996), 105–139 | DOI | MR
[5] Carey A. L., Johnson S., Murray M. K., Stevenson D., Wang B.-L., “Bundle gerbes for Chern–Simons and Wess–Zumino–Witten theories”, Comm. Math. Phys., 259 (2005), 577–613, arXiv: math.DG/0410013 | DOI | MR
[6] Chern S. S., Simons J., “Characteristic forms and geometric invariants”, Ann. of Math., 99 (1974), 48–69 | DOI | MR
[7] Conway J. H., Sloane N. J. A., Sphere packings, lattices and groups, Grundlehren der Mathematischen Wissenschaften, 290, 3rd ed., Springer-Verlag, New York, 1999 | DOI | MR
[8] Johnson-Freyd T., Treumann D., ${H}^4({\rm Co}_0; Z)= Z/24$, arXiv: 1707.07587
[9] Murray M. K., Roberts D. M., Stevenson D., Vozzo R. F., “Equivariant bundle gerbes”, Adv. Theor. Math. Phys., 21 (2017), 921–975, arXiv: 1506.07931 | DOI | MR
[10] Noohi B., “Notes on 2-groupoids, 2-groups and crossed modules”, Homology Homotopy Appl., 9 (2007), 75–106, arXiv: math.CT/0512106 | DOI | MR
[11] Pressley A., Segal G., Loop groups, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1986 | MR
[12] Schommer-Pries C. J., “Central extensions of smooth 2-groups and a finite-dimensional string 2-group”, Geom. Topol., 15 (2011), 609–676, arXiv: 0911.2483 | DOI | MR
[13] Tits J., “Le Monstre (d'après R. Griess, B. Fischer et al.)”, Astérisque, 121–122, 1985, 105–122 | MR
[14] Wagemann F., Wockel C., “A cocycle model for topological and Lie group cohomology”, Trans. Amer. Math. Soc., 367 (2015), 1871–1909, arXiv: 1110.3304 | DOI | MR
[15] Waldorf K., “Multiplicative bundle gerbes with connection”, Differential Geom. Appl., 28 (2010), 313–340, arXiv: 0804.4835 | DOI | MR
[16] Waldorf K., “A construction of string 2-group models using a transgression-regression technique”, Analysis, Geometry and Quantum Field Theory, Contemp. Math., 584, Amer. Math. Soc., Providence, RI, 2012, 99–115, arXiv: 1201.5052 | DOI | MR
[17] Waldorf K., “Transgression to loop spaces and its inverse, II: Gerbes and fusion bundles with connection”, Asian J. Math., 20 (2016), 59–115, arXiv: 1004.0031 | DOI | MR