@article{SIGMA_2018_14_a129,
author = {Andrey Krutov and Alexei Lebedev},
title = {On {Gradings} {Modulo~}$2$ of {Simple} {Lie} {Algebras} in {Characteristic~}$2$},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a129/}
}
TY - JOUR AU - Andrey Krutov AU - Alexei Lebedev TI - On Gradings Modulo $2$ of Simple Lie Algebras in Characteristic $2$ JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a129/ LA - en ID - SIGMA_2018_14_a129 ER -
Andrey Krutov; Alexei Lebedev. On Gradings Modulo $2$ of Simple Lie Algebras in Characteristic $2$. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a129/
[1] Bahturin Y., Kochetov M., “Group gradings on restricted Cartan-type Lie algebras”, Pacific J. Math., 253 (2011), 289–319, arXiv: 1001.0191 | DOI
[2] Bouarroudj S., Grozman P., Lebedev A., Leites D., Derivations and central extensions of simple modular Lie algebras and superalgebras, arXiv: 1307.1858
[3] Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., Simple vectorial Lie algebras in characteristic 2 and their superizations, arXiv: 1510.07255
[4] Bouarroudj S., Grozman P., Lebedev A., Leites D., Shchepochkina I., “New simple Lie algebras in characteristic 2”, Int. Math. Res. Not., 2016 (2016), 5695–5726, arXiv: 1307.1551 | DOI
[5] Bouarroudj S., Grozman P., Leites D., Deforms of symmetric simple modular Lie (super)algebras, arXiv: 0807.3054
[6] Bouarroudj S., Grozman P., Leites D., “Classification of finite dimensional modular Lie superalgebras with indecomposable Cartan matrix”, SIGMA, 5 (2009), 060, 63 pp., arXiv: 0710.5149 | DOI
[7] Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., Classifications of simple Lie superalgebras in characteristic 2, arXiv: 1407.1695
[8] Bouarroudj S., Lebedev A., Leites D., Shchepochkina I., “Lie algebra deformations in characteristic 2”, Math. Res. Lett., 22 (2015), 353–402, arXiv: 1301.2781 | DOI
[9] Bouarroudj S., Lebedev A., Wagemann F., “Deformations of the Lie algebra ${\mathfrak o}(5)$ in characteristics 3 and 2”, Math. Notes, 89 (2011), 777–791, arXiv: 0909.3572 | DOI
[10] Chebochko N. G., Kuznetsov M. I., “Integrable cocycles and global deformations of Lie algebra of type $G_2$ in characteristic 2”, Comm. Algebra, 45 (2017), 2969–2977 | DOI
[11] Dolotkazin A. H., “Irreducible representations of a simple three-dimensional Lie algebra of characteristic $p=2$”, Math. Notes, 24 (1978), 588–590 | DOI
[12] Eick B., “Some new simple Lie algebras in characteristic 2”, J. Symbolic Comput., 45 (2010), 943–951 | DOI
[13] Elduque A., Kochetov M., Gradings on simple Lie algebras, Mathematical Surveys and Monographs, 189, Amer. Math. Soc., Providence, RI; Atlantic Association for Research in the Mathematical Sciences (AARMS), Halifax, NS, 2013 | DOI
[14] Grishkov A., Zusmanovich P., “Deformations of current Lie algebras. I. Small algebras in characteristic 2”, J. Algebra, 473 (2017), 513–544, arXiv: 1410.3645 | DOI
[15] Grozman P., SuperLie: a Mathematica package for calculations in Lie algebras and superalgebras, http://www.equaonline.com/math/SuperLie
[16] Grozman P., Leites D., “Structures of $G(2)$ type and nonintegrable distributions in characteristic $p$”, Lett. Math. Phys., 74 (2005), 229–262, arXiv: math.RT/0509400 | DOI
[17] Helgason S., Differential geometry, Lie groups, and symmetric spaces, Pure and Applied Mathematics, 80, Academic Press, Inc., New York–London, 1978
[18] Kochetov M., “Gradings on finite-dimensional simple Lie algebras”, Acta Appl. Math., 108 (2009), 101–127 | DOI
[19] Kochetov M., Parsons N., Sadov S., “Counting fine grading on matrix algebras and on classical simple Lie algebras”, Internat. J. Algebra Comput., 23 (2013), 1755–1781, arXiv: 1210.4589 | DOI
[20] Kostrikin A. I., “The beginnings of modular Lie algebra theory”, Group Theory, Algebra, and Number Theory (Saarbrücken, 1993), de Gruyter, Berlin, 1996, 13–52
[21] Kuznetsov M. I., “Maximal tori of a general Lie algebra of Cartan type”, Sb. Math., 188 (1997), 1317–1342 | DOI
[22] Lebedev A., “Analogs of the orthogonal, Hamiltonian, Poisson, and contact Lie superalgebras in characteristic 2”, J. Nonlinear Math. Phys., 17:1 (2010), 217–251 | DOI
[23] Permiakov D. S., “Derivations of classical Lie algebras over the field of characteristic 2”, Vestnik Lobachevsky State Univ. Nizhni Novgorod Ser. Math., 1 (2005), 123–134 http://www.vestnik.unn.ru/en/nomera?anum=1455
[24] Richardson Jr. R.W., “On the rigidity of semi-direct products of Lie algebras”, Pacific J. Math., 22 (1967), 339–344 | DOI
[25] Skryabin S., “Classification of Hamiltonian forms over divided power algebras”, Math. USSR-Sb., 69 (1991), 121–141 | DOI
[26] Skryabin S., “Toral rank one simple Lie algebras of low characteristics”, J. Algebra, 200 (1998), 650–700 | DOI
[27] Skryabin S., “On the automorphism group schemes of Lie algebras of Witt type”, Comm. Algebra, 29 (2001), 4047–4077 | DOI
[28] Strade H., Simple Lie algebras over fields of positive characteristic. I. Structure theory, De Gruyter Expositions in Mathematics, 38, Walter de Gruyter Co., Berlin, 2004 | DOI
[29] Tyurin S. A., “Classification of tori in the Zassenhaus algebra”, Russian Math. (Iz. VUZ), 42:2 (1998), 66–73