Deformations of Pre-Symplectic Structures: a Dirac Geometry Approach
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We explain the geometric origin of the $L_{\infty}$-algebra controlling deformations of pre-symplectic structures.
Keywords: pre-symplectic geometry; deformation theory; Dirac geometry.
@article{SIGMA_2018_14_a127,
     author = {Florian Sch\"atz and Marco Zambon},
     title = {Deformations of {Pre-Symplectic} {Structures:} a {Dirac} {Geometry} {Approach}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a127/}
}
TY  - JOUR
AU  - Florian Schätz
AU  - Marco Zambon
TI  - Deformations of Pre-Symplectic Structures: a Dirac Geometry Approach
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a127/
LA  - en
ID  - SIGMA_2018_14_a127
ER  - 
%0 Journal Article
%A Florian Schätz
%A Marco Zambon
%T Deformations of Pre-Symplectic Structures: a Dirac Geometry Approach
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a127/
%G en
%F SIGMA_2018_14_a127
Florian Schätz; Marco Zambon. Deformations of Pre-Symplectic Structures: a Dirac Geometry Approach. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a127/

[1] Fiorenza D., Manetti M., “Formality of Koszul brackets and deformations of holomorphic Poisson manifolds”, Homology Homotopy Appl., 14 (2012), 63–75, arXiv: 1109.4309 | DOI

[2] Frégier Y., Zambon M., “Simultaneous deformations and Poisson geometry”, Compos. Math., 151 (2015), 1763–1790, arXiv: 1202.2896 | DOI

[3] Gualtieri M., Matviichuk M., Scott G., “Deformation of Dirac structures via $L_{\infty}$ algebras”, Int. Math. Res. Not. (to appear) , arXiv: 1702.08837 | DOI

[4] Liu Z.-J., Weinstein A., Xu P., “Manin triples for Lie bialgebroids”, J. Differential Geom., 45 (1997), 547–574, arXiv: dg-ga/9508013 | DOI

[5] Manetti M., “On some formality criteria for DG-Lie algebras”, J. Algebra, 438 (2015), 90–118, arXiv: 1310.3048 | DOI

[6] Roytenberg D., Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. Thesis, University of California at Berkeley, arXiv: math.DG/9910078

[7] Schätz F., Zambon M., “Deformations of pre-symplectic structures and the Koszul $L_{\infty}$-algebra”, Int. Math. Res. Not. (to appear) , arXiv: 1703.00290 | DOI

[8] Voronov T., “Higher derived brackets and homotopy algebras”, J. Pure Appl. Algebra, 202 (2005), 133–153, arXiv: math.QA/0304038 | DOI

[9] Voronov T., “Higher derived brackets for arbitrary derivations”, Trav. Math., 16, University of Luxembourg, Luxembourg, 2005, 163–186, arXiv: math.QA/0412202