@article{SIGMA_2018_14_a125,
author = {Maurice Kenfack Nangho and Kerstin Jordaan},
title = {Structure {Relations} of {Classical} {Orthogonal} {Polynomials} in the {Quadratic} and $q${-Quadratic} {Variable}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a125/}
}
TY - JOUR AU - Maurice Kenfack Nangho AU - Kerstin Jordaan TI - Structure Relations of Classical Orthogonal Polynomials in the Quadratic and $q$-Quadratic Variable JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a125/ LA - en ID - SIGMA_2018_14_a125 ER -
%0 Journal Article %A Maurice Kenfack Nangho %A Kerstin Jordaan %T Structure Relations of Classical Orthogonal Polynomials in the Quadratic and $q$-Quadratic Variable %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a125/ %G en %F SIGMA_2018_14_a125
Maurice Kenfack Nangho; Kerstin Jordaan. Structure Relations of Classical Orthogonal Polynomials in the Quadratic and $q$-Quadratic Variable. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a125/
[1] Al-Salam W. A., “Characterization theorems for orthogonal polynomials”, Orthogonal Polynomials (Columbus, OH, 1989), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 294, Kluwer Acad. Publ., Dordrecht, 1990, 1–24 | DOI
[2] Al-Salam W. A., Chihara T. S., “Another characterization of the classical orthogonal polynomials”, SIAM J. Math. Anal., 3 (1972), 65–70 | DOI
[3] Álvarez Nodarse R., “On characterizations of classical polynomials”, J. Comput. Appl. Math., 196 (2006), 320–337 | DOI
[4] Andrews G. E., Askey R., “Classical orthogonal polynomials”, Orthogonal Polynomials and Applications (Bar-le-Duc, 1984), Lecture Notes in Math., 1171, Springer, Berlin, 1985, 36–62 | DOI
[5] Askey R., Wilson J., Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc., 54, 1985, iv+55 pp. | DOI
[6] Atakishiyev N. M., Rahman M., Suslov S. K., “On classical orthogonal polynomials”, Constr. Approx., 11 (1995), 181–226 | DOI
[7] Bochner S., “Über Sturm–Liouvillesche Polynomsysteme”, Math. Z., 29 (1929), 730–736 | DOI
[8] Costas-Santos R. S., Marcellán F., “$q$-classical orthogonal polynomials: a general difference calculus approach”, Acta Appl. Math., 111 (2010), 107–128, arXiv: math.CA/0612097 | DOI
[9] Datta S., Griffin J., “A characterization of some $q$-orthogonal polynomials”, Ramanujan J., 12 (2006), 425–437 | DOI
[10] Foupouagnigni M., “On difference equations for orthogonal polynomials on nonuniform lattices”, J. Difference Equ. Appl., 14 (2008), 127–174 | DOI
[11] García A. G., Marcellán F., Salto L., “A distributional study of discrete classical orthogonal polynomials”, J. Comput. Appl. Math., 57 (1995), 147–162 | DOI
[12] Grünbaum F. A., Haine L., “The $q$-version of a theorem of Bochner”, J. Comput. Appl. Math., 68 (1996), 103–114 | DOI
[13] Ismail M. E. H., “A generalization of a theorem of Bochner”, J. Comput. Appl. Math., 159 (2003), 319–324 | DOI
[14] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI
[15] Jooste A., Zeros of Jacobi, Meixner and Krawtchouk polynomials, Ph.D. Thesis, University of Pretoria, 2013 https://repository.up.ac.za/handle/2263/30787
[16] Kenfack Nangho M., Foupouagnigni M., Koepf W., “On exponential and trigonometric functions on nonuniform lattices”, Ramanujan J. (to appear)
[17] Kenfack Nangho M., Jordaan K., “A characterization of Askey–Wilson polynomials”, Proc. Amer. Math. Soc. (to appear) , arXiv: 1711.03349 | DOI
[18] Koekoek R., Lesky P. A., Swarttouw R. F., Hypergeometric orthogonal polynomials and their $q$-analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010 | DOI
[19] Koepf W., Schmersau D., “Representations of orthogonal polynomials”, J. Comput. Appl. Math., 90 (1998), 57–94, arXiv: math.CA/9703217 | DOI
[20] Koepf W., Schmersau D., “On a structure formula for classical $q$-orthogonal polynomials”, J. Comput. Appl. Math., 136 (2001), 99–107 | DOI
[21] Koornwinder T. H., “The structure relation for Askey–Wilson polynomials”, J. Comput. Appl. Math., 207 (2007), 214–226, arXiv: math.CA/0601303 | DOI
[22] Magnus A. P., “Associated Askey–Wilson polynomials as Laguerre–Hahn orthogonal polynomials”, Orthogonal Polynomials and their Applications (Segovia, 1986), Lecture Notes in Math., 1329, Springer, Berlin, 1988, 261–278 | DOI
[23] Marcellán F., Branquinho A., Petronilho J., “Classical orthogonal polynomials: a functional approach”, Acta Appl. Math., 34 (1994), 283–303 | DOI
[24] Maroni P., “Variations around classical orthogonal polynomials. Connected problems”, J. Comput. Appl. Math., 48 (1993), 133–155 | DOI
[25] Maroni P., “Semi-classical character and finite-type relations between polynomial sequences”, Appl. Numer. Math., 31 (1999), 295–330 | DOI
[26] Nikiforov A. F., Suslov S. K., Uvarov V. B., Classical orthogonal polynomials of a discrete variable, Springer Series in Computational Physics, Springer-Verlag, Berlin, 1991 | DOI
[27] Tcheutia D. D., Jooste A. S., Koepf W., “Mixed recurrence equations and interlacing properties for zeros of sequences of classical $q$-orthogonal polynomials”, Appl. Numer. Math., 125 (2018), 86–102 | DOI
[28] Vinet L., Zhedanov A., “Generalized Bochner theorem: characterization of the Askey–Wilson polynomials”, J. Comput. Appl. Math., 211 (2008), 45–56, arXiv: 0712.0069 | DOI