On Solutions of the Fuji–Suzuki–Tsuda System
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We derive Fredholm determinant and series representation of the tau function of the Fuji–Suzuki–Tsuda system and its multivariate extension, thereby generalizing to higher rank the results obtained for Painlevé VI and the Garnier system. A special case of our construction gives a higher rank analog of the continuous hypergeometric kernel of Borodin and Olshanski. We also initiate the study of algebraic braid group dynamics of semi-degenerate monodromy, and obtain as a byproduct a direct isomonodromic proof of the AGT-W relation for ${c=N-1}$.
Mots-clés : isomonodromic deformations; Painlevé equations; Fredholm determinants.
@article{SIGMA_2018_14_a122,
     author = {Pavlo Gavrilenko and Nikolai Iorgov and Oleg Lisovyy},
     title = {On {Solutions} of the {Fuji{\textendash}Suzuki{\textendash}Tsuda} {System}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a122/}
}
TY  - JOUR
AU  - Pavlo Gavrilenko
AU  - Nikolai Iorgov
AU  - Oleg Lisovyy
TI  - On Solutions of the Fuji–Suzuki–Tsuda System
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a122/
LA  - en
ID  - SIGMA_2018_14_a122
ER  - 
%0 Journal Article
%A Pavlo Gavrilenko
%A Nikolai Iorgov
%A Oleg Lisovyy
%T On Solutions of the Fuji–Suzuki–Tsuda System
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a122/
%G en
%F SIGMA_2018_14_a122
Pavlo Gavrilenko; Nikolai Iorgov; Oleg Lisovyy. On Solutions of the Fuji–Suzuki–Tsuda System. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a122/

[1] Alday L. F., Gaiotto D., Tachikawa Y., “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl

[2] Bershtein M. A., Shchechkin A. I., “Bilinear equations on Painlevé $\tau$ functions from CFT”, Comm. Math. Phys., 339 (2015), 1021–1061, arXiv: 1406.3008 | DOI | MR | Zbl

[3] Borodin A., Deift P., “Fredholm determinants, Jimbo–Miwa–Ueno $\tau$-functions, and representation theory”, Comm. Pure Appl. Math., 55 (2002), 1160–1230, arXiv: math-ph/0111007 | DOI | MR | Zbl

[4] Borodin A., Olshanski G., “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math., 161 (2005), 1319–1422, arXiv: math.RT/0109194 | DOI | MR | Zbl

[5] Cafasso M., Gavrylenko P., Lisovyy O., “Tau functions as Widom constants”, Comm. Math. Phys. (to appear) , arXiv: 1712.08546 | DOI | MR

[6] Chekhov L., Mazzocco M., “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226 (2011), 4731–4775, arXiv: 0909.5350 | DOI | MR | Zbl

[7] Deift P., Its A., Kapaev A., Zhou X., “On the algebro-geometric integration of the Schlesinger equations”, Comm. Math. Phys., 203 (1999), 613–633 | DOI | MR | Zbl

[8] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl

[9] Dubrovin B., Mazzocco M., “Monodromy of certain Painlevé-VI transcendents and reflection groups”, Invent. Math., 141 (2000), 55–147, arXiv: math.AG/9806056 | DOI | MR | Zbl

[10] Fateev V. A., Litvinov A. V., “Integrable structure, W-symmetry and AGT relation”, J. High Energy Phys., 2012:1 (2012), 051, 39 pp., arXiv: 1109.4042 | DOI | MR | Zbl

[11] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé transcendents: the Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR

[12] Fuji K., Suzuki T., “Drinfeld–Sokolov hierarchies of type $A$ and fourth order Painlevé systems”, Funkcial. Ekvac., 53 (2010), 143–167, arXiv: 0904.3434 | DOI | MR | Zbl

[13] Gamayun O., Iorgov N., Lisovyy O., “Conformal field theory of Painlevé VI”, J. High Energy Phys., 2012:10 (2012), 038, 25 pp., arXiv: 1207.0787 | DOI | MR

[14] Gavrylenko P., Iorgov N., Lisovyy O., Higher rank isomonodromic deformations and $W$-algebras, arXiv: 1801.09608

[15] Gavrylenko P., Lisovyy O., “Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions”, Comm. Math. Phys., 363 (2018), 1–58, arXiv: 1608.00958 | DOI | MR | Zbl

[16] Gavrylenko P., Lisovyy O., “Pure ${\rm SU}(2)$ gauge theory partition function and generalized Bessel kernel”, String-Math 2016, Proc. Sympos. Pure Math., 98, Amer. Math. Soc., Providence, RI, 2018, 181–205, arXiv: 1705.01869 | MR

[17] Iorgov N., Lisovyy O., Teschner J., “Isomonodromic tau-functions from Liouville conformal blocks”, Comm. Math. Phys., 336 (2015), 671–694, arXiv: 1401.6104 | DOI | MR | Zbl

[18] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl

[19] Kitaev A. V., Korotkin D. A., “On solutions of the Schlesinger equations in terms of $\Theta$-functions”, Int. Math. Res. Not., 1998 (1998), 877–905, arXiv: math-ph/9810007 | DOI | MR | Zbl

[20] Korotkin D. A., “Solution of matrix Riemann–Hilbert problems with quasi-permutation monodromy matrices”, Math. Ann., 329 (2004), 335–364, arXiv: math-ph/0306061 | DOI | MR | Zbl

[21] Lisovyy O., Tykhyy Y., “Algebraic solutions of the sixth Painlevé equation”, J. Geom. Phys., 85 (2014), 124–163, arXiv: 0809.4873 | DOI | MR | Zbl

[22] Mano T., Tsuda T., “Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral”, Math. Z., 285 (2017), 397–431, arXiv: 1502.06695 | DOI | MR | Zbl

[23] Mazzocco M., “Picard and Chazy solutions to the Painlevé VI equation”, Math. Ann., 321 (2001), 157–195, arXiv: math.AG/9901054 | DOI | MR | Zbl

[24] Mironov A., Morozov A., “On AGT relation in the case of ${\rm U}(3)$”, Nuclear Phys. B, 825 (2010), 1–37, arXiv: 0908.2569 | DOI | MR | Zbl

[25] Nekrasov N. A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | DOI | MR | Zbl

[26] Okamoto K., “Studies on the Painlevé equations. I Sixth Painlevé equation $P_{{\rm VI}}$”, Ann. Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl

[27] Suzuki T., “A particular solution of a Painlevé system in terms of the hypergeometric function $_{n+1}F_n$”, SIGMA, 6 (2010), 078, 11 pp., arXiv: 1002.2685 | DOI | MR | Zbl

[28] Suzuki T., “A class of higher order Painlevé systems arising from integrable hierarchies of type $A$”, Algebraic and geometric aspects of integrable systems and random matrices, Contemp. Math., 593, Amer. Math. Soc., Providence, RI, 2013, 125–141, arXiv: 1002.2685 | DOI | MR | Zbl

[29] Tsuda T., “From KP/UC hierarchies to Painlevé equations”, Internat. J. Math., 23 (2012), 1250010, 59 pp., arXiv: 1004.1347 | DOI | MR | Zbl

[30] Tsuda T., “Hypergeometric solution of a certain polynomial Hamiltonian system of isomonodromy type”, Q. J. Math., 63 (2012), 489–505, arXiv: 1005.4130 | DOI | MR | Zbl

[31] Tsuda T., “UC hierarchy and monodromy preserving deformation”, J. Reine Angew. Math., 690 (2014), 1–34, arXiv: 1007.3450 | DOI | MR | Zbl

[32] Wyllard N., “$A_{N-1}$ conformal Toda field theory correlation functions from conformal ${\mathcal N}=2$ ${\rm SU}(N)$ quiver gauge theories”, J. High Energy Phys., 2009:11 (2009), 002, 22 pp., arXiv: 0907.2189 | DOI | MR

[33] Yamada Y., “A quantum isomonodromy equation and its application to ${\mathcal N}=2$ ${\rm SU}(N)$ gauge theories”, J. Phys. A: Math. Theor., 44 (2011), 055403, 9 pp., arXiv: 1011.0292 | DOI | MR | Zbl