@article{SIGMA_2018_14_a122,
author = {Pavlo Gavrilenko and Nikolai Iorgov and Oleg Lisovyy},
title = {On {Solutions} of the {Fuji{\textendash}Suzuki{\textendash}Tsuda} {System}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a122/}
}
Pavlo Gavrilenko; Nikolai Iorgov; Oleg Lisovyy. On Solutions of the Fuji–Suzuki–Tsuda System. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a122/
[1] Alday L. F., Gaiotto D., Tachikawa Y., “Liouville correlation functions from four-dimensional gauge theories”, Lett. Math. Phys., 91 (2010), 167–197, arXiv: 0906.3219 | DOI | MR | Zbl
[2] Bershtein M. A., Shchechkin A. I., “Bilinear equations on Painlevé $\tau$ functions from CFT”, Comm. Math. Phys., 339 (2015), 1021–1061, arXiv: 1406.3008 | DOI | MR | Zbl
[3] Borodin A., Deift P., “Fredholm determinants, Jimbo–Miwa–Ueno $\tau$-functions, and representation theory”, Comm. Pure Appl. Math., 55 (2002), 1160–1230, arXiv: math-ph/0111007 | DOI | MR | Zbl
[4] Borodin A., Olshanski G., “Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes”, Ann. of Math., 161 (2005), 1319–1422, arXiv: math.RT/0109194 | DOI | MR | Zbl
[5] Cafasso M., Gavrylenko P., Lisovyy O., “Tau functions as Widom constants”, Comm. Math. Phys. (to appear) , arXiv: 1712.08546 | DOI | MR
[6] Chekhov L., Mazzocco M., “Isomonodromic deformations and twisted Yangians arising in Teichmüller theory”, Adv. Math., 226 (2011), 4731–4775, arXiv: 0909.5350 | DOI | MR | Zbl
[7] Deift P., Its A., Kapaev A., Zhou X., “On the algebro-geometric integration of the Schlesinger equations”, Comm. Math. Phys., 203 (1999), 613–633 | DOI | MR | Zbl
[8] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[9] Dubrovin B., Mazzocco M., “Monodromy of certain Painlevé-VI transcendents and reflection groups”, Invent. Math., 141 (2000), 55–147, arXiv: math.AG/9806056 | DOI | MR | Zbl
[10] Fateev V. A., Litvinov A. V., “Integrable structure, W-symmetry and AGT relation”, J. High Energy Phys., 2012:1 (2012), 051, 39 pp., arXiv: 1109.4042 | DOI | MR | Zbl
[11] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé transcendents: the Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR
[12] Fuji K., Suzuki T., “Drinfeld–Sokolov hierarchies of type $A$ and fourth order Painlevé systems”, Funkcial. Ekvac., 53 (2010), 143–167, arXiv: 0904.3434 | DOI | MR | Zbl
[13] Gamayun O., Iorgov N., Lisovyy O., “Conformal field theory of Painlevé VI”, J. High Energy Phys., 2012:10 (2012), 038, 25 pp., arXiv: 1207.0787 | DOI | MR
[14] Gavrylenko P., Iorgov N., Lisovyy O., Higher rank isomonodromic deformations and $W$-algebras, arXiv: 1801.09608
[15] Gavrylenko P., Lisovyy O., “Fredholm determinant and Nekrasov sum representations of isomonodromic tau functions”, Comm. Math. Phys., 363 (2018), 1–58, arXiv: 1608.00958 | DOI | MR | Zbl
[16] Gavrylenko P., Lisovyy O., “Pure ${\rm SU}(2)$ gauge theory partition function and generalized Bessel kernel”, String-Math 2016, Proc. Sympos. Pure Math., 98, Amer. Math. Soc., Providence, RI, 2018, 181–205, arXiv: 1705.01869 | MR
[17] Iorgov N., Lisovyy O., Teschner J., “Isomonodromic tau-functions from Liouville conformal blocks”, Comm. Math. Phys., 336 (2015), 671–694, arXiv: 1401.6104 | DOI | MR | Zbl
[18] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl
[19] Kitaev A. V., Korotkin D. A., “On solutions of the Schlesinger equations in terms of $\Theta$-functions”, Int. Math. Res. Not., 1998 (1998), 877–905, arXiv: math-ph/9810007 | DOI | MR | Zbl
[20] Korotkin D. A., “Solution of matrix Riemann–Hilbert problems with quasi-permutation monodromy matrices”, Math. Ann., 329 (2004), 335–364, arXiv: math-ph/0306061 | DOI | MR | Zbl
[21] Lisovyy O., Tykhyy Y., “Algebraic solutions of the sixth Painlevé equation”, J. Geom. Phys., 85 (2014), 124–163, arXiv: 0809.4873 | DOI | MR | Zbl
[22] Mano T., Tsuda T., “Hermite–Padé approximation, isomonodromic deformation and hypergeometric integral”, Math. Z., 285 (2017), 397–431, arXiv: 1502.06695 | DOI | MR | Zbl
[23] Mazzocco M., “Picard and Chazy solutions to the Painlevé VI equation”, Math. Ann., 321 (2001), 157–195, arXiv: math.AG/9901054 | DOI | MR | Zbl
[24] Mironov A., Morozov A., “On AGT relation in the case of ${\rm U}(3)$”, Nuclear Phys. B, 825 (2010), 1–37, arXiv: 0908.2569 | DOI | MR | Zbl
[25] Nekrasov N. A., “Seiberg–Witten prepotential from instanton counting”, Adv. Theor. Math. Phys., 7 (2003), 831–864, arXiv: hep-th/0206161 | DOI | MR | Zbl
[26] Okamoto K., “Studies on the Painlevé equations. I Sixth Painlevé equation $P_{{\rm VI}}$”, Ann. Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl
[27] Suzuki T., “A particular solution of a Painlevé system in terms of the hypergeometric function $_{n+1}F_n$”, SIGMA, 6 (2010), 078, 11 pp., arXiv: 1002.2685 | DOI | MR | Zbl
[28] Suzuki T., “A class of higher order Painlevé systems arising from integrable hierarchies of type $A$”, Algebraic and geometric aspects of integrable systems and random matrices, Contemp. Math., 593, Amer. Math. Soc., Providence, RI, 2013, 125–141, arXiv: 1002.2685 | DOI | MR | Zbl
[29] Tsuda T., “From KP/UC hierarchies to Painlevé equations”, Internat. J. Math., 23 (2012), 1250010, 59 pp., arXiv: 1004.1347 | DOI | MR | Zbl
[30] Tsuda T., “Hypergeometric solution of a certain polynomial Hamiltonian system of isomonodromy type”, Q. J. Math., 63 (2012), 489–505, arXiv: 1005.4130 | DOI | MR | Zbl
[31] Tsuda T., “UC hierarchy and monodromy preserving deformation”, J. Reine Angew. Math., 690 (2014), 1–34, arXiv: 1007.3450 | DOI | MR | Zbl
[32] Wyllard N., “$A_{N-1}$ conformal Toda field theory correlation functions from conformal ${\mathcal N}=2$ ${\rm SU}(N)$ quiver gauge theories”, J. High Energy Phys., 2009:11 (2009), 002, 22 pp., arXiv: 0907.2189 | DOI | MR
[33] Yamada Y., “A quantum isomonodromy equation and its application to ${\mathcal N}=2$ ${\rm SU}(N)$ gauge theories”, J. Phys. A: Math. Theor., 44 (2011), 055403, 9 pp., arXiv: 1011.0292 | DOI | MR | Zbl