Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For ordinary differential equations in the complex domain, a central problem is to understand, in a given equation or class of equations, those whose solutions do not present multivaluedness. We consider autonomous, first-order, quadratic homogeneous equations in three variables, and begin the classification of those which do not have multivalued solutions.
Keywords: Painlevé property; univalence; semicompleteness; Chazy equation; Riccati equation; Kowalevski exponents.
@article{SIGMA_2018_14_a121,
     author = {Adolfo Guillot},
     title = {Quadratic {Differential} {Equations} in {Three} {Variables} without {Multivalued} {Solutions:} {Part~I}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a121/}
}
TY  - JOUR
AU  - Adolfo Guillot
TI  - Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a121/
LA  - en
ID  - SIGMA_2018_14_a121
ER  - 
%0 Journal Article
%A Adolfo Guillot
%T Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a121/
%G en
%F SIGMA_2018_14_a121
Adolfo Guillot. Quadratic Differential Equations in Three Variables without Multivalued Solutions: Part I. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a121/

[1] Audin M., Remembering Sofya Kovalevskaya, Springer, London, 2011 | DOI | MR | Zbl

[2] Briot C., Bouquet J. C., “Recherches sur les fonctions doublement périodiques”, C. R. Acad. Sci. Paris, 40 (1855), 342–344

[3] Brunella M., Birational geometry of foliations, Monografías de Matemática, Instituto de Matemática Pura e Aplicada (IMPA), Rio de Janeiro, 2000 | MR | Zbl

[4] Burnside W., “Note on the equation $y^2 = x \big(x^4--1\big)$”, Proc. Lond. Math. Soc., s1–24 (1892), 17–20 | DOI | MR

[5] Camacho C., Sad P., “Invariant varieties through singularities of holomorphic vector fields”, Ann. of Math., 115 (1982), 579–595 | DOI | MR | Zbl

[6] Chazy J., “Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Acta Math., 34 (1911), 317–385 | DOI | MR | Zbl

[7] Conte R., “The Painlevé approach to nonlinear ordinary differential equations”, The Painlevé Property, CRM Ser. Math. Phys., Springer, New York, 1999, 77–180, arXiv: solv-int/9710020 | DOI | MR

[8] Cosgrove C. M., “Chazy classes IX–XI of third-order differential equations”, Stud. Appl. Math., 104 (2000), 171–228 | DOI | MR | Zbl

[9] Cosgrove C. M., “Higher-order Painlevé equations in the polynomial class. I Bureau symbol ${\rm P2}$”, Stud. Appl. Math., 104 (2000), 1–65 | DOI | MR | Zbl

[10] Cosgrove C. M., “Higher-order Painlevé equations in the polynomial class. II Bureau symbol $P1$”, Stud. Appl. Math., 116 (2006), 321–413 | DOI | MR | Zbl

[11] Exton H., “Third order differential systems with fixed critical points”, Funkcial. Ekvac., 19 (1976), 45–51 | MR | Zbl

[12] Fujiki A., “Finite automorphism groups of complex tori of dimension two”, Publ. Res. Inst. Math. Sci., 24 (1988), 1–97 | DOI | MR | Zbl

[13] Gambier B., “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes”, Acta Math., 33 (1910), 1–55 | DOI | MR

[14] Garnier R., “Sur des systèmes différentiels du second ordre dont l'intégrale générale est uniforme”, Ann. Sci. École Norm. Sup., 77 (1960), 123–144 | DOI | MR | Zbl

[15] Ghys E., Rebelo J. C., “Singularités des flots holomorphes. II”, Ann. Inst. Fourier (Grenoble), 47 (1997), 1117–1174 | DOI | MR | Zbl

[16] Goriely A., “A brief history of Kovalevskaya exponents and modern developments”, Regul. Chaotic Dyn., 5 (2000), 3–15 | DOI | MR | Zbl

[17] Guillot A., Champs quadratiques uniformisables, Ph.D. Thesis, École Normale Supérieure de Lyon, 2001

[18] Guillot A., “Sur les exemples de Lins Neto de feuilletages algébriques”, C. R. Math. Acad. Sci. Paris, 334 (2002), 747–750 | DOI | MR | Zbl

[19] Guillot A., “Un théorème de point fixe pour les endomorphismes de l'espace projectif avec des applications aux feuilletages algébriques”, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 345–362 | DOI | MR | Zbl

[20] Guillot A., “Semicompleteness of homogeneous quadratic vector fields”, Ann. Inst. Fourier (Grenoble), 56 (2006), 1583–1615 | DOI | MR | Zbl

[21] Guillot A., “Sur les équations d'{H}alphen et les actions de ${\rm SL}_2(C)$”, Publ. Math., Inst. Hautes Études Sci., 2007, 221–294 | DOI | MR | Zbl

[22] Guillot A., “Some generalizations of Halphen's equations”, Osaka J. Math., 48 (2011), 1085–1094 | MR | Zbl

[23] Guillot A., “The geometry of Chazy's homogeneous third-order differential equations”, Funkcial. Ekvac., 55 (2012), 67–87, arXiv: 1011.6090 | DOI | MR | Zbl

[24] Guillot A., “Complex differential equations and geometric structures on curves”, Geometrical Themes Inspired by the $N$-Body Problem, Lecture Notes in Math., 2204, Springer, Cham, 2018, 1–47 | DOI | MR

[25] Guillot A., “Further Riccati differential equations with elliptic coefficients and meromorphic solutions”, J. Nonlinear Math. Phys., 25 (2018), 497–508 | DOI | MR | Zbl

[26] Guillot A., Ramírez V., On the multipliers at fixed points of self-maps of the projective plane, in preparation

[27] Guillot A., Rebelo J., “Semicomplete meromorphic vector fields on complex surfaces”, J. Reine Angew. Math., 667 (2012), 27–65 | DOI | MR | Zbl

[28] Halphen G. H., “Sur un système d'équations différentielles”, C. R. Acad. Sci. Paris, 92 (1881), 1101–1103

[29] Halphen G. H., “Sur certains systèmes d'équations différentielles”, C. R. Acad. Sci. Paris, 92 (1881), 1404–1406

[30] Hille E., Ordinary differential equations in the complex domain, Dover Publications, Inc., Mineola, NY, 1997 | MR | Zbl

[31] Hoyer P., Ueber die Integration eines Differentialgleichungssystems von der Form ... durch elliptische Funktionen, Ph.D. Thesis, Friedrich-Willelms Universität, Berlin, 1879 http://resolver.sub.uni-goettingen.de/purl?PPN310984289

[32] Ince E. L., Ordinary differential equations, Dover Publications, New York, 1944 | MR | Zbl

[33] Kimura T., Matuda T., “On systems of differential equations of order two with fixed branch points”, Proc. Japan Acad. Ser. A Math. Sci., 56 (1980), 445–449 | DOI | MR | Zbl

[34] Kowalevski S., “Sur le problème de la rotation d'un corps solide autour d'un point fixe”, Acta Math., 12 (1889), 177–232 | DOI | MR

[35] Kudryashov Yu., Ramírez V., Spectra of quadratic vector fields on $\mathbb{C}^2$: the missing relation, arXiv: 1705.06340

[36] Landau L. D., Lifshitz E. M., Course of theoretical physics, v. 1, Mechanics, Pergamon Press, Oxford–London–New York–Paris, 1976 | MR

[37] Lawden D. F., Elliptic functions and applications, Applied Mathematical Sciences, 80, Springer-Verlag, New York, 1989 | DOI | MR | Zbl

[38] Lins Neto A., “Some examples for the Poincaré and Painlevé problems”, Ann. Sci. École Norm. Sup., 35 (2002), 231–266 | DOI | MR | Zbl

[39] Lins Neto A., “Fibers of the Baum–Bott map for foliations of degree two on ${\mathbb P}^2$”, Bull. Braz. Math. Soc. (N.S.), 43 (2012), 129–169 | DOI | MR | Zbl

[40] Mumford D., Tata lectures on theta II. Jacobian theta functions and differential equations, Progress in Mathematics, 43, Birkhäuser Boston, Inc., Boston, MA, 1984 | DOI | MR | Zbl

[41] Painlevé P., “Mémoire sur les équations différentielles dont l'intégrale générale est uniforme”, Bull. Soc. Math. France, 28 (1900), 201–261 | DOI | MR | Zbl

[42] Painlevé P., “Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme”, Acta Math., 25 (1902), 1–85 | DOI | MR

[43] Palais R. S., A global formulation of the Lie theory of transformation groups, Mem. Amer. Math. Soc., 22, 1957, iii+123 pp. | DOI | MR | Zbl

[44] Pan I., Sebastiani M., Les équations différentielles algébriques et les singularités mobiles, Ensaios Matemáticos, 8, Sociedade Brasileira de Matemática, Rio de Janeiro, 2004 | MR

[45] Rebelo J. C., “Singularités des flots holomorphes”, Ann. Inst. Fourier (Grenoble), 46 (1996), 411–428 | DOI | MR | Zbl

[46] SageMath, the Sage Mathematics Software System, Version 8.1, , 2017 http://www.sagemath.org

[47] Yoshida H., “Necessary condition for the existence of algebraic first integrals. I Kowalevski's exponents”, Celestial Mech., 31 (1983), 363–379 | DOI | MR | Zbl