@article{SIGMA_2018_14_a120,
author = {Kamil Yu. Magadov and Vyacheslav P. Spiridonov},
title = {Matrix {Bailey} {Lemma} and the {Star-Triangle} {Relation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a120/}
}
Kamil Yu. Magadov; Vyacheslav P. Spiridonov. Matrix Bailey Lemma and the Star-Triangle Relation. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a120/
[1] Andrews G. E., “Multiple series Rogers–Ramanujan type identities”, Pacific J. Math., 114 (1984), 267–283 | DOI | MR | Zbl
[2] Andrews G. E., Askey R., Roy R., Special functions, Encyclopedia of Mathematics and its Applications, 71, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[3] Bailey W. N., “Identities of the Rogers–Ramanujan type”, Proc. London Math. Soc., 50 (1948), 1–10 | DOI | MR | Zbl
[4] Baxter R. J., “Hard hexagons: exact solution”, J. Phys. A: Math. Gen., 13 (1980), L61–L70 | DOI | MR
[5] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR | Zbl
[6] Bazhanov V. V., Kels A. P., Sergeev S. M., “Quasi-classical expansion of the star-triangle relation and integrable systems on quad-graphs”, J. Phys. A: Math. Theor., 49 (2016), 464001, 44 pp., arXiv: 1602.07076 | DOI | MR | Zbl
[7] Bressoud D. M., “A matrix inverse”, Proc. Amer. Math. Soc., 88 (1983), 446–448 | DOI | MR | Zbl
[8] Derkachov S. E., “Factorization of the $R$-matrix. I”, J. Math. Sci., 143 (2007), 2773–2790, arXiv: math.QA/0503396 | DOI | MR
[9] Derkachov S. E., Karakhanyan D., Kirschner R., “Yang–Baxter ${\mathcal R}$-operators and parameter permutations”, Nuclear Phys. B, 785 (2007), 263–285, arXiv: hep-th/0703076 | DOI | MR | Zbl
[10] Derkachov S. E., Spiridonov V. P., “Yang–Baxter equation, parameter permutations, and the elliptic beta integral”, Russian Math. Surveys, 68 (2013), 1027–1072, arXiv: 1205.3520 | DOI | MR
[11] Derkachov S. E., Spiridonov V. P., “Finite-dimensional representations of the elliptic modular double”, Theoret. and Math. Phys., 183 (2015), 597–618, arXiv: 1310.7570 | DOI | MR | Zbl
[12] Frenkel I. B., Turaev V. G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR | Zbl
[13] Paule P., “On identities of the Rogers–Ramanujan type”, J. Math. Anal. Appl., 107 (1985), 255–284 | DOI | MR | Zbl
[14] Rahman M., “An integral representation of a $_{10}\varphi_9$ and continuous bi-orthogonal $_{10}\varphi_9$ rational functions”, Canad. J. Math., 38 (1986), 605–618 | DOI | MR | Zbl
[15] Rains E. M., “Multivariate quadratic transformations and the interpolation kernel”, SIGMA, 14 (2018), 019, 69 pp., arXiv: 1408.0305 | DOI | MR | Zbl
[16] Rastelli L., Razamat S. S., “The supersymmetric index in four dimensions”, J. Phys. A: Math. Theor., 50 (2017), 443013, 34 pp., arXiv: 1608.02965 | DOI | MR | Zbl
[17] Spiridonov V. P., “On the elliptic beta function”, Russian Math. Surveys, 56 (2001), 185–186 | DOI | MR | Zbl
[18] Spiridonov V. P., “An elliptic incarnation of the Bailey chain”, Int. Math. Res. Not., 2002 (2002), 1945–1977 | DOI | MR | Zbl
[19] Spiridonov V. P., “A Bailey tree for integrals”, Theoret. and Math. Phys., 139 (2004), 536–541, arXiv: math.CA/0312502 | DOI | MR | Zbl
[20] Spiridonov V. P., “Essays on the theory of elliptic hypergeometric functions”, Russian Math. Surveys, 63 (2008), 405–472, arXiv: 0805.3135 | DOI | MR | Zbl
[21] Spiridonov V. P., Warnaar S. O., “Inversions of integral operators and elliptic beta integrals on root systems”, Adv. Math., 207 (2006), 91–132, arXiv: math.CA/0411044 | DOI | MR | Zbl
[22] Takhtadzhan L. A., Faddeev L. D., “The quantum method of inverse problem and the Heisenberg XYZ model”, Russian Math. Surveys, 34:5 (1979), 11–68 | DOI | MR
[23] Warnaar S. O., “50 years of Bailey's lemma”, Algebraic Combinatorics and Applications (Gößweinstein, 1999), Springer, Berlin, 2001, 333–347, arXiv: 0910.2062 | DOI | MR | Zbl
[24] Warnaar S. O., “Extensions of the well-poised and elliptic well-poised Bailey lemma”, Indag. Math. (N.S.), 14 (2003), 571–588, arXiv: math.CA/0309241 | DOI | MR | Zbl
[25] Zudilin W., Hypergeometric heritage of W.N. Bailey. With an appendix: Bailey's letters to F Dyson, arXiv: 1611.08806