@article{SIGMA_2018_14_a12,
author = {Andrew P. Kels and Masahito Yamazaki},
title = {Elliptic {Hypergeometric} {Sum/Integral} {Transformations} and {Supersymmetric} {Lens} {Index}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a12/}
}
TY - JOUR AU - Andrew P. Kels AU - Masahito Yamazaki TI - Elliptic Hypergeometric Sum/Integral Transformations and Supersymmetric Lens Index JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a12/ LA - en ID - SIGMA_2018_14_a12 ER -
%0 Journal Article %A Andrew P. Kels %A Masahito Yamazaki %T Elliptic Hypergeometric Sum/Integral Transformations and Supersymmetric Lens Index %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a12/ %G en %F SIGMA_2018_14_a12
Andrew P. Kels; Masahito Yamazaki. Elliptic Hypergeometric Sum/Integral Transformations and Supersymmetric Lens Index. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a12/
[1] Au-Yang H., Perk J. H. H., McCoy B. M., Tang S., Yan M. L., “Commuting transfer matrices in the chiral Potts models: solutions of star-triangle equations with genus $>1$”, Phys. Lett. A, 123 (1987), 219–223 | DOI | MR
[2] Baxter R. J., “Partition function of the eight-vertex lattice model”, Ann. Physics, 70 (1972), 193–228 | DOI | MR
[3] Baxter R. J., Exactly solved models in statistical mechanics, Academic Press, Inc., London, 1982 | MR
[4] Baxter R. J., “Star-triangle and star-star relations in statistical mechanics”, Internat. J. Modern Phys. B, 11 (1997), 27–37 | DOI | MR
[5] Baxter R. J., Perk J. H. H., Au-Yang H., “New solutions of the star-triangle relations for the chiral Potts model”, Phys. Lett. A, 128 (1988), 138–142 | DOI | MR
[6] Bazhanov V. V., Kels A. P., Sergeev S. M., “Comment on star-star relations in statistical mechanics and elliptic gamma-function identities”, J. Phys. A: Math. Theor., 46 (2013), 152001, 7 pp., arXiv: 1301.5775 | DOI | MR
[7] Bazhanov V. V., Kels A. P., Sergeev S. M., “Quasi-classical expansion of the star-triangle relation and integrable systems on quad-graphs”, J. Phys. A: Math. Theor., 49 (2016), 464001, 44 pp., arXiv: 1602.07076 | DOI | MR
[8] Bazhanov V. V., Mangazeev V. V., Sergeev S. M., “Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal symmetry”, Nuclear Phys. B, 784 (2007), 234–258, arXiv: hep-th/0703041 | DOI | MR
[9] Bazhanov V. V., Mangazeev V. V., Sergeev S. M., “Exact solution of the Faddeev–Volkov model”, Phys. Lett. A, 372 (2008), 1547–1550, arXiv: 0706.3077 | DOI | MR
[10] Bazhanov V. V., Sergeev S. M., “Elliptic gamma-function and multi-spin solutions of the Yang–Baxter equation”, Nuclear Phys. B, 856 (2012), 475–496, arXiv: 1106.5874 | DOI | MR
[11] Bazhanov V. V., Sergeev S. M., “A master solution of the quantum Yang–Baxter equation and classical discrete integrable equations”, Adv. Theor. Math. Phys., 16 (2012), 65–95, arXiv: 1006.0651 | DOI | MR
[12] Benini F., Nishioka T., Yamazaki M., “4d index to 3d index and 2d TQFT”, Phys. Rev. D, 86 (2012), 065015, 10 pp., arXiv: 1109.0283 | DOI
[13] Date E., Jimbo M., Kuniba A., Miwa T., Okado M., “Exactly solvable SOS models. II. Proof of the star-triangle relation and combinatorial identities”, Conformal Field Theory and Solvable Lattice Models (Kyoto, 1986), Adv. Stud. Pure Math., 16, Academic Press, Boston, MA, 1988, 17–122 | MR
[14] Dolan F. A., Osborn H., “Applications of the superconformal index for protected operators and $q$-hypergeometric identities to ${\mathcal N}=1$ dual theories”, Nuclear Phys. B, 818 (2009), 137–178, arXiv: 0801.4947 | DOI | MR
[15] Faddeev L., Volkov A. Yu., “Abelian current algebra and the Virasoro algebra on the lattice”, Phys. Lett. B, 315 (1993), 311–318, arXiv: hep-th/9307048 | DOI | MR
[16] Fateev V. A., Zamolodchikov A. B., “Self-dual solutions of the star-triangle relations in $Z_{N}$-models”, Phys. Lett. A, 92 (1982), 37–39 | DOI | MR
[17] Frenkel I. B., Turaev V. G., “Elliptic solutions of the Yang–Baxter equation and modular hypergeometric functions”, The Arnold–Gelfand Mathematical Seminars, Birkhäuser Boston, Boston, MA, 1997, 171–204 | DOI | MR
[18] Gahramanov I., Kels A. P., “The star-triangle relation, lens partition function, and hypergeometric sum/integrals”, J. High Energy Phys., 2017:2 (2017), 040, 41 pp., arXiv: 1610.09229 | DOI | MR
[19] Gahramanov I., Spiridonov V. P., “The star-triangle relation and $3d$ superconformal indices”, J. High Energy Phys., 2015:8 (2015), 040, 23 pp., arXiv: 1505.00765 | DOI | MR
[20] Kashiwara M., Miwa T., “A class of elliptic solutions to the star-triangle relation”, Nuclear Phys. B, 275 (1986), 121–134 | DOI | MR
[21] Kels A. P., “A new solution of the star-triangle relation”, J. Phys. A: Math. Theor., 47 (2014), 055203, 6 pp., arXiv: 1302.3025 | DOI
[22] Kels A. P., “New solutions of the star-triangle relation with discrete and continuous spin variables”, J. Phys. A: Math. Theor., 48 (2015), 435201, 19 pp., arXiv: 1504.07074 | DOI | MR
[23] Kinney J., Maldacena J., Minwalla S., Raju S., “An index for 4 dimensional super conformal theories”, Comm. Math. Phys., 275 (2007), 209–254, arXiv: hep-th/0510251 | DOI | MR
[24] Narukawa A., “The modular properties and the integral representations of the multiple elliptic gamma functions”, Adv. Math., 189 (2004), 247–267, arXiv: math.QA/0306164 | DOI | MR
[25] Rains E. M., Ann. of Math., 171 (2010), Transformations of elliptic hypergeometric integrals, arXiv: math.QA/0309252 | DOI | MR
[26] Razamat S. S., Willett B., “Global properties of supersymmetric theories and the lens space”, Comm. Math. Phys., 334 (2015), 661–696, arXiv: 1307.4381 | DOI | MR
[27] Ruijsenaars S. N. M., “First order analytic difference equations and integrable quantum systems”, J. Math. Phys., 38 (1997), 1069–1146 | DOI | MR
[28] Seiberg N., “Electric-magnetic duality in supersymmetric non-abelian gauge theories”, Nuclear Phys. B, 435 (1995), 129–146, arXiv: hep-th/9411149 | DOI | MR
[29] Spiridonov V. P., “On the elliptic beta function”, Russian Math. Surveys, 56 (2001), 185–186 | DOI | MR
[30] Spiridonov V. P., “Theta hypergeometric integrals”, St. Petersburg Math. J., 15 (2004), 929–967, arXiv: math.CA/0303205 | DOI | MR
[31] Spiridonov V. P., “Short proofs of the elliptic beta integrals”, Ramanujan J., 13 (2007), 265–283, arXiv: math.CA/0408369 | DOI | MR
[32] Spiridonov V. P., “Essays on the theory of elliptic hypergeometric functions”, Russian Math. Surveys, 63 (2008), 405–472, arXiv: 0805.3135 | DOI | MR
[33] Spiridonov V. P., “Elliptic beta integrals and solvable models of statistical mechanics”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemp. Math., 563, Amer. Math. Soc., Providence, RI, 2012, 181–211, arXiv: 1011.3798 | DOI | MR
[34] Spiridonov V. P., Rarefied elliptic hypergeometric functions, arXiv: 1609.00715
[35] Spiridonov V. P., Vartanov G. S., “Elliptic hypergeometry of supersymmetric dualities”, Comm. Math. Phys., 304 (2011), 797–874, arXiv: 0910.5944 | DOI | MR
[36] Spiridonov V. P., Vartanov G. S., “Elliptic hypergeometry of supersymmetric dualities II. Orthogonal groups, knots, and vortices”, Comm. Math. Phys., 325 (2014), 421–486, arXiv: 1107.5788 | DOI | MR
[37] Stokman J. V., “Hyperbolic beta integrals”, Adv. Math., 190 (2005), 119–160, arXiv: math.QA/0303178 | DOI | MR
[38] Terashima Y., Yamazaki M., “Emergent 3-manifolds from 4d superconformal indices”, Phys. Rev. Lett., 109 (2012), 091602, 4 pp., arXiv: 1203.5792 | DOI
[39] Volkov A. Yu., “Quantum Volterra model”, Phys. Lett. A, 167 (1992), 345–355 | DOI | MR
[40] Yamazaki M., “Quivers, YBE and 3-manifolds”, J. High Energy Phys., 2012:5 (2012), 147, 50 pp., arXiv: 1203.5784 | DOI | MR
[41] Yamazaki M., “New integrable models from the gauge/YBE correspondence”, J. Stat. Phys., 154 (2014), 895–911, arXiv: 1307.1128 | DOI | MR