@article{SIGMA_2018_14_a119,
author = {Alexandr Buryak and Paolo Rossi},
title = {Simple {Lax} {Description} of the {ILW} {Hierarchy}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a119/}
}
Alexandr Buryak; Paolo Rossi. Simple Lax Description of the ILW Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a119/
[1] Brini A., Carlet G., Romano S., Rossi P., “Rational reductions of the 2D-Toda hierarchy and mirror symmetry”, J. Eur. Math. Soc. (JEMS), 19 (2017), 835–880, arXiv: 1401.5725 | DOI | MR | Zbl
[2] Buryak A., “Dubrovin–Zhang hierarchy for the Hodge integrals”, Commun. Number Theory Phys., 9 (2015), 239–272, arXiv: 1308.5716 | DOI | MR
[3] Buryak A., Dubrovin B., Guéré J., Rossi P., Integrable systems of double ramification type, arXiv: 1609.04059
[4] Buryak A., Rossi P., Extended $r$-spin theory in all genera and the discrete KdV hierarchy, arXiv: 1806.09825
[5] Carlet G., Extended Toda hierarchy and its Hamiltonian structure, Ph.D. Thesis, Mathematical Physics Sector, SISSA – International School for Advanced Studies, 2003
[6] Carlet G., Dubrovin B., Zhang Y., “The extended Toda hierarchy”, Mosc. Math. J., 4 (2004), 313–332, arXiv: nlin.SI/0306060 | MR | Zbl
[7] Joseph R. I., “Solitary waves in a finite depth fluid”, J. Phys. A: Math. Gen., 10 (1977), 225–227 | DOI | MR
[8] Liu S.-Q., Zhang Y., “On quasi-triviality and integrability of a class of scalar evolutionary PDEs”, J. Geom. Phys., 57 (2006), 101–119, arXiv: nlin.SI/0510019 | DOI | MR | Zbl
[9] Milanov T. E., Tseng H.-H., “Equivariant orbifold structures on the projective line and integrable hierarchies”, Adv. Math., 226 (2011), 641–672, arXiv: 0707.3172 | DOI | MR | Zbl
[10] Satsuma J., Ablowitz M. J., Kodama Y., “On an internal wave equation describing a stratified fluid with finite depth”, Phys. Lett. A, 73 (1979), 283–286 | DOI | MR