Simple Lax Description of the ILW Hierarchy
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note we present a simple Lax description of the hierarchy of the intermediate long wave equation (ILW hierarchy). Although the linear inverse scattering problem for the ILW equation itself was well known, here we give an explicit expression for all higher flows and their Hamiltonian structure in terms of a single Lax difference-differential operator.
Keywords: intermediate long wave hierarchy; ILW; Lax representation; integrable systems; Hamiltonian.
@article{SIGMA_2018_14_a119,
     author = {Alexandr Buryak and Paolo Rossi},
     title = {Simple {Lax} {Description} of the {ILW} {Hierarchy}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a119/}
}
TY  - JOUR
AU  - Alexandr Buryak
AU  - Paolo Rossi
TI  - Simple Lax Description of the ILW Hierarchy
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a119/
LA  - en
ID  - SIGMA_2018_14_a119
ER  - 
%0 Journal Article
%A Alexandr Buryak
%A Paolo Rossi
%T Simple Lax Description of the ILW Hierarchy
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a119/
%G en
%F SIGMA_2018_14_a119
Alexandr Buryak; Paolo Rossi. Simple Lax Description of the ILW Hierarchy. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a119/

[1] Brini A., Carlet G., Romano S., Rossi P., “Rational reductions of the 2D-Toda hierarchy and mirror symmetry”, J. Eur. Math. Soc. (JEMS), 19 (2017), 835–880, arXiv: 1401.5725 | DOI | MR | Zbl

[2] Buryak A., “Dubrovin–Zhang hierarchy for the Hodge integrals”, Commun. Number Theory Phys., 9 (2015), 239–272, arXiv: 1308.5716 | DOI | MR

[3] Buryak A., Dubrovin B., Guéré J., Rossi P., Integrable systems of double ramification type, arXiv: 1609.04059

[4] Buryak A., Rossi P., Extended $r$-spin theory in all genera and the discrete KdV hierarchy, arXiv: 1806.09825

[5] Carlet G., Extended Toda hierarchy and its Hamiltonian structure, Ph.D. Thesis, Mathematical Physics Sector, SISSA – International School for Advanced Studies, 2003

[6] Carlet G., Dubrovin B., Zhang Y., “The extended Toda hierarchy”, Mosc. Math. J., 4 (2004), 313–332, arXiv: nlin.SI/0306060 | MR | Zbl

[7] Joseph R. I., “Solitary waves in a finite depth fluid”, J. Phys. A: Math. Gen., 10 (1977), 225–227 | DOI | MR

[8] Liu S.-Q., Zhang Y., “On quasi-triviality and integrability of a class of scalar evolutionary PDEs”, J. Geom. Phys., 57 (2006), 101–119, arXiv: nlin.SI/0510019 | DOI | MR | Zbl

[9] Milanov T. E., Tseng H.-H., “Equivariant orbifold structures on the projective line and integrable hierarchies”, Adv. Math., 226 (2011), 641–672, arXiv: 0707.3172 | DOI | MR | Zbl

[10] Satsuma J., Ablowitz M. J., Kodama Y., “On an internal wave equation describing a stratified fluid with finite depth”, Phys. Lett. A, 73 (1979), 283–286 | DOI | MR