Integral Regulators for Higher Chow Complexes
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Building on Kerr, Lewis and Müller–Stach's work on the rational regulator, we prove the existence of an integral regulator on higher Chow complexes and give an explicit expression. This puts firm ground under some earlier results and speculations on the torsion in higher cycle groups by Kerr–Lewis–Müller-Stach, Petras, and Kerr–Yang.
Keywords: integral regulator; higher Chow groups; algebraic cycles; Abel–Jacobi map.
@article{SIGMA_2018_14_a117,
     author = {Muxi Li},
     title = {Integral {Regulators} for {Higher} {Chow} {Complexes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a117/}
}
TY  - JOUR
AU  - Muxi Li
TI  - Integral Regulators for Higher Chow Complexes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a117/
LA  - en
ID  - SIGMA_2018_14_a117
ER  - 
%0 Journal Article
%A Muxi Li
%T Integral Regulators for Higher Chow Complexes
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a117/
%G en
%F SIGMA_2018_14_a117
Muxi Li. Integral Regulators for Higher Chow Complexes. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a117/

[1] Bloch S., “Algebraic cycles and higher $K$-theory”, Adv. Math., 61 (1986), 267–304 | DOI | MR | Zbl

[2] Bloch S., “Algebraic cycles and the Beĭlinson conjectures”, The Lefschetz Centennial Conference (Mexico City, 1984), v. I, Contemp. Math., 58, Amer. Math. Soc., Providence, RI, 1986, 65–79 | DOI | MR

[3] Bloch S., Some notes on elementary properties of higher chow groups, including functoriality properties and cubical chow groups, Preprint http://www.math.uchicago.edu/b̃loch/publications.html

[4] Kerr M., Lewis J. D., Müller-Stach S., “The Abel–Jacobi map for higher Chow groups”, Compos. Math., 142 (2006), 374–396, arXiv: math.AG/0409116 | DOI | MR | Zbl

[5] Kerr M., Lewis J. D., “The Abel–Jacobi map for higher Chow groups. II”, Invent. Math., 170 (2007), 355–420, arXiv: math.AG/0611333 | DOI | MR | Zbl

[6] Kerr M., Li M., Two applications of the integral regulator, arXiv: 1809.04114

[7] Kerr M., Yang Y., “An explicit basis for the rational higher Chow groups of abelian number fields”, Ann. K-Theory, 3 (2018), 173–191, arXiv: 1608.07477 | DOI | MR | Zbl

[8] Lion J.-M., Rolin J.-P., “Théorème de préparation pour les fonctions logarithmico-exponentielles”, Ann. Inst. Fourier (Grenoble), 47 (1997), 859–884 | DOI | MR | Zbl

[9] Nowak K. J., “Flat morphisms between regular varieties”, Univ. Iagel. Acta Math., 35 (1997), 243–246 | MR | Zbl

[10] Petras O., “Functional equations of the dilogarithm in motivic cohomology”, J. Number Theory, 129 (2009), 2346–2368, arXiv: 0712.3987 | DOI | MR | Zbl

[11] Weißschuh T., “A commutative regulator map into Deligne–Beilinson cohomology”, Manuscripta Math., 152 (2017), 281–315, arXiv: 1410.4686 | DOI | MR | Zbl