@article{SIGMA_2018_14_a117,
author = {Muxi Li},
title = {Integral {Regulators} for {Higher} {Chow} {Complexes}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a117/}
}
Muxi Li. Integral Regulators for Higher Chow Complexes. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a117/
[1] Bloch S., “Algebraic cycles and higher $K$-theory”, Adv. Math., 61 (1986), 267–304 | DOI | MR | Zbl
[2] Bloch S., “Algebraic cycles and the Beĭlinson conjectures”, The Lefschetz Centennial Conference (Mexico City, 1984), v. I, Contemp. Math., 58, Amer. Math. Soc., Providence, RI, 1986, 65–79 | DOI | MR
[3] Bloch S., Some notes on elementary properties of higher chow groups, including functoriality properties and cubical chow groups, Preprint http://www.math.uchicago.edu/b̃loch/publications.html
[4] Kerr M., Lewis J. D., Müller-Stach S., “The Abel–Jacobi map for higher Chow groups”, Compos. Math., 142 (2006), 374–396, arXiv: math.AG/0409116 | DOI | MR | Zbl
[5] Kerr M., Lewis J. D., “The Abel–Jacobi map for higher Chow groups. II”, Invent. Math., 170 (2007), 355–420, arXiv: math.AG/0611333 | DOI | MR | Zbl
[6] Kerr M., Li M., Two applications of the integral regulator, arXiv: 1809.04114
[7] Kerr M., Yang Y., “An explicit basis for the rational higher Chow groups of abelian number fields”, Ann. K-Theory, 3 (2018), 173–191, arXiv: 1608.07477 | DOI | MR | Zbl
[8] Lion J.-M., Rolin J.-P., “Théorème de préparation pour les fonctions logarithmico-exponentielles”, Ann. Inst. Fourier (Grenoble), 47 (1997), 859–884 | DOI | MR | Zbl
[9] Nowak K. J., “Flat morphisms between regular varieties”, Univ. Iagel. Acta Math., 35 (1997), 243–246 | MR | Zbl
[10] Petras O., “Functional equations of the dilogarithm in motivic cohomology”, J. Number Theory, 129 (2009), 2346–2368, arXiv: 0712.3987 | DOI | MR | Zbl
[11] Weißschuh T., “A commutative regulator map into Deligne–Beilinson cohomology”, Manuscripta Math., 152 (2017), 281–315, arXiv: 1410.4686 | DOI | MR | Zbl