Normal Functions over Locally Symmetric Varieties
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We classify the irreducible Hermitian real variations of Hodge structure admitting an infinitesimal normal function, and draw conclusions for cycle-class maps on families of abelian varieties with a given Mumford–Tate group.
Keywords: normal function; Hermitian symmetric domain; Mumford–Tate group; variation of Hodge structure; algebraic cycle.
@article{SIGMA_2018_14_a115,
     author = {Ryan Keast and Matt Kerr},
     title = {Normal {Functions} over {Locally} {Symmetric} {Varieties}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a115/}
}
TY  - JOUR
AU  - Ryan Keast
AU  - Matt Kerr
TI  - Normal Functions over Locally Symmetric Varieties
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a115/
LA  - en
ID  - SIGMA_2018_14_a115
ER  - 
%0 Journal Article
%A Ryan Keast
%A Matt Kerr
%T Normal Functions over Locally Symmetric Varieties
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a115/
%G en
%F SIGMA_2018_14_a115
Ryan Keast; Matt Kerr. Normal Functions over Locally Symmetric Varieties. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a115/

[1] Ceresa G., “$C$ is not algebraically equivalent to $C^{-}$ in its Jacobian”, Ann. of Math., 117 (1983), 285–291 | DOI | MR | Zbl

[2] Collino A., Naranjo J. C., Pirola G. P., “The Fano normal function”, J. Math. Pures Appl., 98 (2012), 346–366, arXiv: 1109.1456 | DOI | MR | Zbl

[3] Faber C., “Prym varieties of triple cyclic covers”, Math. Z., 199 (1988), 61–79 | DOI | MR | Zbl

[4] Fakhruddin N., “Algebraic cycles on generic abelian varieties”, Compositio Math., 100 (1996), 101–119 | MR | Zbl

[5] Friedman R., Laza R., “Semialgebraic horizontal subvarieties of Calabi–Yau type”, Duke Math. J., 162 (2013), 2077–2148 | DOI | MR | Zbl

[6] Fulton W., Harris J., Representation theory: a first course, Graduate Texts in Mathematics, 129, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[7] van Geemen B., “Kuga–Satake varieties and the Hodge conjecture”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 51–82, arXiv: math.AG/9903146 | DOI | MR | Zbl

[8] van Geemen B., “Half twists of Hodge structures of CM-type”, J. Math. Soc. Japan, 53 (2001), 813–833, arXiv: math.AG/0008076 | DOI | MR | Zbl

[9] van Geemen B., Verra A., “Quaternionic Pryms and Hodge classes”, Topology, 42 (2003), 35–53, arXiv: math.AG/0103111 | DOI | MR | Zbl

[10] Green M., “Griffiths' infinitesimal invariant and the Abel–Jacobi map”, J. Differential Geom., 29 (1989), 545–555 | DOI | MR | Zbl

[11] Green M., Griffiths P., “Algebraic cycles and singularities of normal functions”, Algebraic Cycles and Motives, v. 1, London Math. Soc. Lecture Note Ser., 343, Cambridge University Press, Cambridge, 2007, 206–263 | DOI | MR | Zbl

[12] Green M., Griffiths P., Kerr M., Mumford–Tate groups and domains: their geometry and arithmetic, Annals of Mathematics Studies, 183, Princeton University Press, Princeton, NJ, 2012 | MR | Zbl

[13] Gross B. H., “A remark on tube domains”, Math. Res. Lett., 1 (1994), 1–9 | DOI | MR

[14] Hain R. M., “Torelli groups and geometry of moduli spaces of curves”, Current Topics in Complex Algebraic Geometry (Berkeley, CA, 1992/93), Math. Sci. Res. Inst. Publ., 28, Cambridge University Press, Cambridge, 1995, 97–143, arXiv: alg-geom/9403015 | MR | Zbl

[15] Izadi E., “Some remarks on the Hodge conjecture for abelian varieties”, Ann. Mat. Pura Appl., 189 (2010), 487–495 | DOI | MR | Zbl

[16] Kerr M., Pearlstein G., “An exponential history of functions with logarithmic growth”, Topology of Stratified Spaces, Math. Sci. Res. Inst. Publ., 58, Cambridge University Press, Cambridge, 2011, 281–374, arXiv: 0903.4903 | MR | Zbl

[17] Knapp A. W., Lie groups beyond an introduction, Progress in Mathematics, 140, 2nd ed., Birkhäuser Boston, Inc., Boston, MA, 2002 | DOI | MR | Zbl

[18] Kostant B., “Lie algebra cohomology and the generalized Borel–Weil theorem”, Ann. of Math., 74 (1961), 329–387 | DOI | MR | Zbl

[19] Laza R., Zhang Z., “Classical period domains”, Recent advances in Hodge theory, London Math. Soc. Lecture Note Ser., 427, Cambridge University Press, Cambridge, 2016, 3–44 | MR | Zbl

[20] Moonen B., Oort F., “The Torelli locus and special subvarieties”, Handbook of Moduli, v. II, Adv. Lect. Math. (ALM), 25, Int. Press, Somerville, MA, 2013, 549–594, arXiv: 1112.0933 | MR | Zbl

[21] Nori M. V., “Cycles on the generic abelian threefold”, Proc. Indian Acad. Sci. Math. Sci., 99 (1989), 191–196 | DOI | MR | Zbl

[22] Nori M. V., “Algebraic cycles and Hodge-theoretic connectivity”, Invent. Math., 111 (1993), 349–373 | DOI | MR | Zbl

[23] Raghunathan M. S., “Cohomology of arithmetic subgroups of algebraic groups. I”, Ann. of Math., 86 (1967), 409–424 | DOI | MR | Zbl

[24] Robles C., “Schubert varieties as variations of Hodge structure”, Selecta Math. (N.S.), 20 (2014), 719–768, arXiv: 1208.5453 | DOI | MR | Zbl

[25] Rohde J. C., Cyclic coverings, Calabi–Yau manifolds and complex multiplication, Lecture Notes in Math., 1975, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

[26] Saito M., “Mixed Hodge modules”, Publ. Res. Inst. Math. Sci., 26 (1990), 221–333 | DOI | MR | Zbl

[27] Schmid W., “Variation of Hodge structure: the singularities of the period mapping”, Invent. Math., 22 (1973), 211–319 | DOI | MR | Zbl

[28] Schoen C., “Hodge classes on self-products of a variety with an automorphism”, Compositio Math., 65 (1988), 3–32 ; Addendum, Compositio Math., 114 (1998), 329–336 | MR | Zbl | DOI | MR | Zbl

[29] Sheng M., Zuo K., “Polarized variation of Hodge structures of Calabi–Yau type and characteristic subvarieties over bounded symmetric domains”, Math. Ann., 348 (2010), 211–236, arXiv: 0705.3779 | DOI | MR | Zbl