@article{SIGMA_2018_14_a114,
author = {Charles F. Dunkl},
title = {The {Smallest} {Singular} {Values} and {Vector-Valued} {Jack} {Polynomials}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a114/}
}
Charles F. Dunkl. The Smallest Singular Values and Vector-Valued Jack Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a114/
[1] Ciubotaru D., “Dirac cohomology for symplectic reflection algebras”, Selecta Math. (N.S.), 22 (2016), 111–144, arXiv: 1502.05671 | DOI | MR | Zbl
[2] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl
[3] Dunkl C. F., “Orthogonality measure on the torus for vector-valued Jack polynomials”, SIGMA, 12 (2016), 033, 27 pp., arXiv: 1511.06721 | DOI | MR | Zbl
[4] Dunkl C. F., The smallest singular values of the icosahedral group, arXiv: 1809.02107
[5] Dunkl C. F., de Jeu M. F. E., Opdam E. M., “Singular polynomials for finite reflection groups”, Trans. Amer. Math. Soc., 346 (1994), 237–256 | DOI | MR | Zbl
[6] Dunkl C. F., Luque J.-G., “Vector-valued Jack polynomials from scratch”, SIGMA, 7 (2011), 026, 48 pp., arXiv: 1009.2366 | DOI | MR | Zbl
[7] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 155, 2nd ed., Cambridge University Press, Cambridge, 2014 | DOI | MR | Zbl
[8] Etingof P., “A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups”, Math. Res. Lett., 17 (2010), 275–282, arXiv: 0903.5084 | DOI | MR | Zbl
[9] Etingof P., Stoica E., “Unitary representations of rational Cherednik algebras (with an appendix by Stephen Griffeth)”, Represent. Theory, 13 (2009), 349–370, arXiv: 0901.4595 | DOI | MR | Zbl
[10] Feigin M., Silantyev A., “Singular polynomials from orbit spaces”, Compos. Math., 148 (2012), 1867–1879, arXiv: 1110.1946 | DOI | MR | Zbl
[11] Griffeth S., “Orthogonal functions generalizing Jack polynomials”, Trans. Amer. Math. Soc., 362 (2010), 6131–6157, arXiv: 0707.0251 | DOI | MR | Zbl
[12] Griffeth S., “Unitary representations of cyclotomic rational Cherednik algebras”, J. Algebra, 512 (2018), 310–356, arXiv: 1106.5094 | DOI | MR | Zbl
[13] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl
[14] James G., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl
[15] Knop F., “Integrality of two variable Kostka functions”, J. Reine Angew. Math., 482 (1997), 177–189, arXiv: q-alg/9603027 | DOI | MR | Zbl
[16] Shelley-Abrahamson S., The Dunkl weight function for rational Cherednik algebras, arXiv: 1803.00440