The Smallest Singular Values and Vector-Valued Jack Polynomials
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There is a space of vector-valued nonsymmetric Jack polynomials associated with any irreducible representation of a symmetric group. Singular polynomials for the smallest singular values are constructed in terms of the Jack polynomials. The smallest singular values bound the region of positivity of the bilinear symmetric form for which the Jack polynomials are mutually orthogonal. As background there are some results about general finite reflection groups and singular values in the context of standard modules of the rational Cherednik algebra.
Keywords: nonsymmetric Jack polynomials; standard modules; Young tableaux.
@article{SIGMA_2018_14_a114,
     author = {Charles F. Dunkl},
     title = {The {Smallest} {Singular} {Values} and {Vector-Valued} {Jack} {Polynomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a114/}
}
TY  - JOUR
AU  - Charles F. Dunkl
TI  - The Smallest Singular Values and Vector-Valued Jack Polynomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a114/
LA  - en
ID  - SIGMA_2018_14_a114
ER  - 
%0 Journal Article
%A Charles F. Dunkl
%T The Smallest Singular Values and Vector-Valued Jack Polynomials
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a114/
%G en
%F SIGMA_2018_14_a114
Charles F. Dunkl. The Smallest Singular Values and Vector-Valued Jack Polynomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a114/

[1] Ciubotaru D., “Dirac cohomology for symplectic reflection algebras”, Selecta Math. (N.S.), 22 (2016), 111–144, arXiv: 1502.05671 | DOI | MR | Zbl

[2] Dunkl C. F., “Integral kernels with reflection group invariance”, Canad. J. Math., 43 (1991), 1213–1227 | DOI | MR | Zbl

[3] Dunkl C. F., “Orthogonality measure on the torus for vector-valued Jack polynomials”, SIGMA, 12 (2016), 033, 27 pp., arXiv: 1511.06721 | DOI | MR | Zbl

[4] Dunkl C. F., The smallest singular values of the icosahedral group, arXiv: 1809.02107

[5] Dunkl C. F., de Jeu M. F. E., Opdam E. M., “Singular polynomials for finite reflection groups”, Trans. Amer. Math. Soc., 346 (1994), 237–256 | DOI | MR | Zbl

[6] Dunkl C. F., Luque J.-G., “Vector-valued Jack polynomials from scratch”, SIGMA, 7 (2011), 026, 48 pp., arXiv: 1009.2366 | DOI | MR | Zbl

[7] Dunkl C. F., Xu Y., Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, 155, 2nd ed., Cambridge University Press, Cambridge, 2014 | DOI | MR | Zbl

[8] Etingof P., “A uniform proof of the Macdonald-Mehta-Opdam identity for finite Coxeter groups”, Math. Res. Lett., 17 (2010), 275–282, arXiv: 0903.5084 | DOI | MR | Zbl

[9] Etingof P., Stoica E., “Unitary representations of rational Cherednik algebras (with an appendix by Stephen Griffeth)”, Represent. Theory, 13 (2009), 349–370, arXiv: 0901.4595 | DOI | MR | Zbl

[10] Feigin M., Silantyev A., “Singular polynomials from orbit spaces”, Compos. Math., 148 (2012), 1867–1879, arXiv: 1110.1946 | DOI | MR | Zbl

[11] Griffeth S., “Orthogonal functions generalizing Jack polynomials”, Trans. Amer. Math. Soc., 362 (2010), 6131–6157, arXiv: 0707.0251 | DOI | MR | Zbl

[12] Griffeth S., “Unitary representations of cyclotomic rational Cherednik algebras”, J. Algebra, 512 (2018), 310–356, arXiv: 1106.5094 | DOI | MR | Zbl

[13] Humphreys J. E., Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29, Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl

[14] James G., Kerber A., The representation theory of the symmetric group, Encyclopedia of Mathematics and its Applications, 16, Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl

[15] Knop F., “Integrality of two variable Kostka functions”, J. Reine Angew. Math., 482 (1997), 177–189, arXiv: q-alg/9603027 | DOI | MR | Zbl

[16] Shelley-Abrahamson S., The Dunkl weight function for rational Cherednik algebras, arXiv: 1803.00440