@article{SIGMA_2018_14_a113,
author = {Scott Carnahan and Takahiro Komuro and Satoru Urano},
title = {Characterizing {Moonshine} {Functions} by {Vertex-Operator-Algebraic} {Conditions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a113/}
}
TY - JOUR AU - Scott Carnahan AU - Takahiro Komuro AU - Satoru Urano TI - Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a113/ LA - en ID - SIGMA_2018_14_a113 ER -
%0 Journal Article %A Scott Carnahan %A Takahiro Komuro %A Satoru Urano %T Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a113/ %G en %F SIGMA_2018_14_a113
Scott Carnahan; Takahiro Komuro; Satoru Urano. Characterizing Moonshine Functions by Vertex-Operator-Algebraic Conditions. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a113/
[1] Alexander D., Cummins C., McKay J., Simons C., “Completely replicable functions”, Groups, Combinatorics Geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., 165, Cambridge University Press, Cambridge, 1992, 87–98 | DOI | MR | Zbl
[2] Borcherds R. E., “Monstrous moonshine and monstrous Lie superalgebras”, Invent. Math., 109 (1992), 405–444 | DOI | MR | Zbl
[3] Carnahan S., “Generalized moonshine II: Borcherds products”, Duke Math. J., 161 (2012), 893–950, arXiv: 0908.4223 | DOI | MR | Zbl
[4] Carnahan S., “51 constructions of the Moonshine module”, Commun. Number Theory Phys., 12 (2018), 305–334, arXiv: 1707.02954 | DOI | MR | Zbl
[5] Conway J., McKay J., Sebbar A., “On the discrete groups of Moonshine”, Proc. Amer. Math. Soc., 132 (2004), 2233–2240 | DOI | MR | Zbl
[6] Conway J. H., Norton S. P., “Monstrous moonshine”, Bull. London Math. Soc., 11 (1979), 308–339 | DOI | MR | Zbl
[7] Cummins C. J., “Congruence subgroups of groups commensurable with ${\rm PSL}(2,{\mathbb Z})$ of genus 0 and 1”, Experiment. Math., 13 (2004), 361–382 | DOI | MR | Zbl
[8] Cummins C. J., Gannon T., “Modular equations and the genus zero property of moonshine functions”, Invent. Math., 129 (1997), 413–443 | DOI | MR | Zbl
[9] Dong C., “Representations of the moonshine module vertex operator algebra”, Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups (South Hadley, MA, 1992), Contemp. Math., 175, Amer. Math. Soc., Providence, RI, 1994, 27–36 | DOI | MR | Zbl
[10] Dong C., Li H., Mason G., “Modular-invariance of trace functions in orbifold theory and generalized Moonshine”, Comm. Math. Phys., 214 (2000), 1–56, arXiv: q-alg/9703016 | DOI | MR | Zbl
[11] Duncan J. F. R., Frenkel I. B., “Rademacher sums, moonshine and gravity”, Commun. Number Theory Phys., 5 (2011), 849–976, arXiv: 0907.4529 | DOI | MR | Zbl
[12] van Ekeren J., Möller S., Scheithauer N. R., “Construction and classification of vertex operator algebras”, J. Reine Angew. Math. (to appear) , arXiv: 1507.08142 | DOI
[13] Ferenbaugh C. R., “The genus-zero problem for $n|h$-type groups”, Duke Math. J., 72 (1993), 31–63 | DOI | MR | Zbl
[14] Ferenbaugh C. R., “Lattices and generalized Hecke operators”, Groups, Difference Sets, and the Monster (Columbus, OH, 1993), Ohio State Univ. Math. Res. Inst. Publ., 4, de Gruyter, Berlin, 1996, 363–368 | DOI | MR | Zbl
[15] Frenkel I., Lepowsky J., Meurman A., Vertex operator algebras and the Monster, Pure and Applied Mathematics, 134, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[16] Norton S. P., List of known replicable functions with integral coefficients, Personal communication, available by email, 2005
[17] Paquette N. M., Persson D., Volpato R., “Monstrous BPS-algebras and the superstring origin of moonshine”, Commun. Number Theory Phys., 10 (2016), 433–526, arXiv: 1601.05412 | DOI | MR | Zbl
[18] Paquette N. M., Persson D., Volpato R., “BPS algebras, genus zero and the heterotic Monster”, J. Phys. A: Math. Theor., 50 (2017), 414001, 17 pp., arXiv: 1701.05169 | DOI | MR | Zbl
[19] Tuite M. P., “On the relationship between Monstrous Moonshine and the uniqueness of the Moonshine module”, Comm. Math. Phys., 166 (1995), 495–532, arXiv: hep-th/9305057 | DOI | MR | Zbl