@article{SIGMA_2018_14_a112,
author = {Shun Shimomura},
title = {Three-Parameter {Solutions} of the {PV} {Schlesinger-Type} {Equation} near the {Point} at {Infinity} and the {Monodromy} {Data}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a112/}
}
TY - JOUR AU - Shun Shimomura TI - Three-Parameter Solutions of the PV Schlesinger-Type Equation near the Point at Infinity and the Monodromy Data JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a112/ LA - en ID - SIGMA_2018_14_a112 ER -
%0 Journal Article %A Shun Shimomura %T Three-Parameter Solutions of the PV Schlesinger-Type Equation near the Point at Infinity and the Monodromy Data %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a112/ %G en %F SIGMA_2018_14_a112
Shun Shimomura. Three-Parameter Solutions of the PV Schlesinger-Type Equation near the Point at Infinity and the Monodromy Data. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a112/
[1] Abramowitz M., Stegun I. A. (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1972 | MR
[2] Andreev F. V., Kitaev A. V., “Connection formulae for asymptotics of the fifth Painlevé transcendent on the real axis”, Nonlinearity, 13 (2000), 1801–1840 | DOI | MR | Zbl
[3] Bonelli G., Lisovyy O., Maruyoshi K., Sciarappa A., Tanzini A., “On Painlevé/gauge theory correspondence”, Lett. Math. Phys., 107 (2017), 2359–2413, arXiv: 1612.06235 | DOI | MR | Zbl
[4] Dubrovin B., Mazzocco M., “Monodromy of certain Painlevé-VI transcendents and reflection groups”, Invent. Math., 141 (2000), 55–147, arXiv: math.AG/9806056 | DOI | MR | Zbl
[5] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. 1, Bateman Manuscript Project, McGraw-Hill Book Co., New York
[6] Fedoryuk M. V., Asymptotic analysis. Linear ordinary differential equations, Springer-Verlag, Berlin, 1993 | DOI | MR | Zbl
[7] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé transcendents. The Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR
[8] Gamayun O., Iorgov N., Lisovyy O., “Conformal field theory of Painlevé VI”, J. High Energy Phys., 2012:10 (2012), 038, 25 pp., arXiv: 1207.0787 | DOI | MR
[9] Gamayun O., Iorgov N., Lisovyy O., “How instanton combinatorics solves Painlevé VI, V and IIIs”, J. Phys. A: Math. Theor., 46 (2013), 335203, 29 pp., arXiv: 1302.1832 | DOI | MR | Zbl
[10] Gromak V. I., “On the theory of Painlevé's equations”, Differential Equations, 11 (1975), 285–287 | MR
[11] Guzzetti D., “On the critical behavior, the connection problem and the elliptic representation of a Painlevé VI equation”, Math. Phys. Anal. Geom., 4 (2001), 293–377, arXiv: 1010.1330 | DOI | MR | Zbl
[12] Guzzetti D., “Tabulation of Painlevé 6 transcendents”, Nonlinearity, 25 (2012), 3235–3276, arXiv: 1108.3401 | DOI | MR | Zbl
[13] Its A. R., Novokshenov V. Yu., The isomonodromic deformation method in the theory of Painlevé equations, Lecture Notes in Math., 1191, Springer-Verlag, Berlin, 1986 | DOI | MR
[14] Jimbo M., “Monodromy problem and the boundary condition for some Painlevé equations”, Publ. Res. Inst. Math. Sci., 18 (1982), 1137–1161 | DOI | MR | Zbl
[15] Jimbo M., Miwa T., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II”, Phys. D, 2 (1981), 407–448 | DOI | MR | Zbl
[16] Kapaev A. A., “Asymptotic behavior of the solutions of the Painlevé equation of the first kind”, Differential Equations, 24 (1988), 1107–1115 | MR | Zbl
[17] Kapaev A. A., “Global asymptotics of the second Painlevé transcendent”, Phys. Lett. A, 167 (1992), 356–362 | DOI | MR
[18] Kapaev A. A., Global asymptotics of the fourth Painlevé transcendent, Preprint # 96-06, Steklov Math. Inst. and IUPUI, 1996 http://www.pdmi.ras.ru/preprint/1996/index.html
[19] Lisovyy O., Nagoya H., Roussillon J., “Irregular conformal blocks and connection formulae for Painlevé V functions”, J. Math. Phys., 59 (2018), 091409, 27 pp., arXiv: 1806.08344 | DOI | MR | Zbl
[20] Nagoya H., “Irregular conformal blocks, with an application to the fifth and fourth Painlevé equations”, J. Math. Phys., 56 (2015), 123505, 24 pp., arXiv: 1505.02398 | DOI | MR | Zbl
[21] Olver F. W. J., Asymptotics and special functions, Computer Science and Applied Mathematics, Academic Press, New York–London, 1974 | MR
[22] Shimomura S., “Series expansions of Painlevé transcendents near the point at infinity”, Funkcial. Ekvac., 58 (2015), 277–319 | DOI | MR | Zbl
[23] Shimomura S., “The sixth {P}ainlevé transcendents and the associated Schlesinger equation”, Publ. Res. Inst. Math. Sci., 51 (2015), 417–463 | DOI | MR | Zbl
[24] Shimomura S., “Critical behaviours of the fifth Painlevé transcendents and the monodromy data”, Kyushu J. Math., 71 (2017), 139–185, arXiv: 1602.08808 | DOI | MR | Zbl
[25] Sibuya Y., Global theory of a second order linear ordinary differential equation with a polynomial coefficient, North-Holland Mathematics Studies, 18, North-Holland Publishing Co., Amsterdam–Oxford, 1975 | MR | Zbl
[26] Takano K., “A $2$-parameter family of solutions of Painlevé equation (V) near the point at infinity”, Funkcial. Ekvac., 26 (1983), 79–113 | MR | Zbl
[27] Wasow W., Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, 14, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1965 | MR | Zbl
[28] Wasow W., Linear turning point theory, Applied Mathematical Sciences, 54, Springer-Verlag, New York, 1985 | DOI | MR | Zbl