@article{SIGMA_2018_14_a111,
author = {Rafaela N. Bonfim and Jean C. Guella and Valdir A. Menegatto},
title = {Strictly {Positive} {Definite} {Functions} on {Compact} {Two-Point} {Homogeneous} {Spaces:} the {Product} {Alternative}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a111/}
}
TY - JOUR AU - Rafaela N. Bonfim AU - Jean C. Guella AU - Valdir A. Menegatto TI - Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a111/ LA - en ID - SIGMA_2018_14_a111 ER -
%0 Journal Article %A Rafaela N. Bonfim %A Jean C. Guella %A Valdir A. Menegatto %T Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a111/ %G en %F SIGMA_2018_14_a111
Rafaela N. Bonfim; Jean C. Guella; Valdir A. Menegatto. Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a111/
[1] Askey R., Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975 | MR
[2] Barbosa V. S., Menegatto V. A., “Strictly positive definite kernels on compact two-point homogeneous spaces”, Math. Inequal. Appl., 19 (2016), 743–756, arXiv: 1505.00591 | DOI | MR | Zbl
[3] Barbosa V. S., Menegatto V. A., “Strict positive definiteness on products of compact two-point homogeneous spaces”, Integral Transforms Spec. Funct., 28 (2017), 56–73, arXiv: 1605.07071 | DOI | MR | Zbl
[4] Berg C., Porcu E., “From Schoenberg coefficients to Schoenberg functions”, Constr. Approx., 45 (2017), 217–241, arXiv: 1505.05682 | DOI | MR | Zbl
[5] Bingham N. H., “Positive definite functions on spheres”, Proc. Cambridge Philos. Soc., 73 (1973), 145–156 | DOI | MR | Zbl
[6] Chen D., Menegatto V. A., Sun X., “A necessary and sufficient condition for strictly positive definite functions on spheres”, Proc. Amer. Math. Soc., 131 (2003), 2733–2740 | DOI | MR | Zbl
[7] De Iaco S., Myers D. E., Posa D., “On strict positive definiteness of product and product-sum covariance models”, J. Statist. Plann. Inference, 141 (2011), 1132–1140 | DOI | MR | Zbl
[8] De Iaco S., Myers D. E., Posa D., “Strict positive definiteness of a product of covariance functions”, Comm. Statist. Theory Methods, 40 (2011), 4400–4408 | DOI | MR | Zbl
[9] De Iaco S., Posa D., “Strict positive definiteness in geostatistics”, Stoch. Environ. Res. Risk Assess., 32 (2018), 577–590 | DOI
[10] Faraut J., “Fonction brownienne sur une variété riemannienne”, Séminaire de Probabilités, VII (Univ. Strasbourg, année universitaire 1971–1972), Lecture Notes in Math., 321, Springer, Berlin, 1973, 61–76 | DOI | MR
[11] Gangolli R., “Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters”, Ann. Inst. H. Poincaré Sect. B, 3 (1967), 121–226 | MR | Zbl
[12] Gasper G., “Linearization of the product of Jacobi polynomials. I”, Canad. J. Math., 22 (1970), 171–175 | DOI | MR | Zbl
[13] Gasper G., “Linearization of the product of Jacobi polynomials. II”, Canad. J. Math., 22 (1970), 582–593 | DOI | MR | Zbl
[14] Guella J. C., Menegatto V. A., “Strictly positive definite kernels on a product of spheres”, J. Math. Anal. Appl., 435 (2016), 286–301, arXiv: 1505.03695 | DOI | MR | Zbl
[15] Guella J. C., Menegatto V. A., “A limit formula for semigroups defined by Fourier–Jacobi series”, Proc. Amer. Math. Soc., 146 (2018), 2027–2038 | DOI | MR | Zbl
[16] Guella J. C., Menegatto V. A., “Unitarily invariant strictly positive definite kernels on spheres”, Positivity, 22 (2018), 91–103 | DOI | MR | Zbl
[17] Guella J. C., Menegatto V. A., “Schoenberg's theorem for positive definite functions on products: a unifying framework”, J. Fourier Anal. Appl. (to appear) | DOI
[18] Helgason S., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs, 83, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl
[19] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, Cambridge, 1990 | MR | Zbl
[20] Hylleraas E. A., “Linearization of products of Jacobi polynomials”, Math. Scand., 10 (1962), 189–200 | DOI | MR | Zbl
[21] Koornwinder T., “Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula”, J. London Math. Soc., 18 (1978), 101–114 | DOI | MR | Zbl
[22] Menegatto V. A., “Strictly positive definite kernels on the Hilbert sphere”, Appl. Anal., 55 (1994), 91–101 | DOI | MR | Zbl
[23] Menegatto V. A., Oliveira C. P., Peron A. P., “Strictly positive definite kernels on subsets of the complex plane”, Comput. Math. Appl., 51 (2006), 1233–1250 | DOI | MR | Zbl
[24] Menegatto V. A., Peron A. P., “Positive definite kernels on complex spheres”, J. Math. Anal. Appl., 254 (2001), 219–232 | DOI | MR | Zbl
[25] Schoenberg I. J., “Positive definite functions on spheres”, Duke Math. J., 9 (1942), 96–108 | DOI | MR | Zbl
[26] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR
[27] Wang H.-C., “Two-point homogeneous spaces”, Ann. of Math., 55 (1952), 177–191 | DOI | MR | Zbl
[28] Wolf J. A., Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011 | MR | Zbl
[29] Wünsche A., “Generalized Zernike or disc polynomials”, J. Comput. Appl. Math., 174 (2005), 135–163 | DOI | MR | Zbl