Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For two continuous and isotropic positive definite kernels on the same compact two-point homogeneous space, we determine necessary and sufficient conditions in order that their product be strictly positive definite. We also provide a similar characterization for kernels on the space-time setting $G \times S^d$, where $G$ is a locally compact group and $S^d$ is the unit sphere in $\mathbb{R}^{d+1}$, keeping isotropy of the kernels with respect to the $S^d$ component. Among other things, these results provide new procedures for the construction of valid models for interpolation and approximation on compact two-point homogeneous spaces.
Keywords: strict positive definiteness; spheres; product kernels; linearization formulas; isotropy.
@article{SIGMA_2018_14_a111,
     author = {Rafaela N. Bonfim and Jean C. Guella and Valdir A. Menegatto},
     title = {Strictly {Positive} {Definite} {Functions} on {Compact} {Two-Point} {Homogeneous} {Spaces:} the {Product} {Alternative}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a111/}
}
TY  - JOUR
AU  - Rafaela N. Bonfim
AU  - Jean C. Guella
AU  - Valdir A. Menegatto
TI  - Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a111/
LA  - en
ID  - SIGMA_2018_14_a111
ER  - 
%0 Journal Article
%A Rafaela N. Bonfim
%A Jean C. Guella
%A Valdir A. Menegatto
%T Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a111/
%G en
%F SIGMA_2018_14_a111
Rafaela N. Bonfim; Jean C. Guella; Valdir A. Menegatto. Strictly Positive Definite Functions on Compact Two-Point Homogeneous Spaces: the Product Alternative. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a111/

[1] Askey R., Orthogonal polynomials and special functions, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1975 | MR

[2] Barbosa V. S., Menegatto V. A., “Strictly positive definite kernels on compact two-point homogeneous spaces”, Math. Inequal. Appl., 19 (2016), 743–756, arXiv: 1505.00591 | DOI | MR | Zbl

[3] Barbosa V. S., Menegatto V. A., “Strict positive definiteness on products of compact two-point homogeneous spaces”, Integral Transforms Spec. Funct., 28 (2017), 56–73, arXiv: 1605.07071 | DOI | MR | Zbl

[4] Berg C., Porcu E., “From Schoenberg coefficients to Schoenberg functions”, Constr. Approx., 45 (2017), 217–241, arXiv: 1505.05682 | DOI | MR | Zbl

[5] Bingham N. H., “Positive definite functions on spheres”, Proc. Cambridge Philos. Soc., 73 (1973), 145–156 | DOI | MR | Zbl

[6] Chen D., Menegatto V. A., Sun X., “A necessary and sufficient condition for strictly positive definite functions on spheres”, Proc. Amer. Math. Soc., 131 (2003), 2733–2740 | DOI | MR | Zbl

[7] De Iaco S., Myers D. E., Posa D., “On strict positive definiteness of product and product-sum covariance models”, J. Statist. Plann. Inference, 141 (2011), 1132–1140 | DOI | MR | Zbl

[8] De Iaco S., Myers D. E., Posa D., “Strict positive definiteness of a product of covariance functions”, Comm. Statist. Theory Methods, 40 (2011), 4400–4408 | DOI | MR | Zbl

[9] De Iaco S., Posa D., “Strict positive definiteness in geostatistics”, Stoch. Environ. Res. Risk Assess., 32 (2018), 577–590 | DOI

[10] Faraut J., “Fonction brownienne sur une variété riemannienne”, Séminaire de Probabilités, VII (Univ. Strasbourg, année universitaire 1971–1972), Lecture Notes in Math., 321, Springer, Berlin, 1973, 61–76 | DOI | MR

[11] Gangolli R., “Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy's Brownian motion of several parameters”, Ann. Inst. H. Poincaré Sect. B, 3 (1967), 121–226 | MR | Zbl

[12] Gasper G., “Linearization of the product of Jacobi polynomials. I”, Canad. J. Math., 22 (1970), 171–175 | DOI | MR | Zbl

[13] Gasper G., “Linearization of the product of Jacobi polynomials. II”, Canad. J. Math., 22 (1970), 582–593 | DOI | MR | Zbl

[14] Guella J. C., Menegatto V. A., “Strictly positive definite kernels on a product of spheres”, J. Math. Anal. Appl., 435 (2016), 286–301, arXiv: 1505.03695 | DOI | MR | Zbl

[15] Guella J. C., Menegatto V. A., “A limit formula for semigroups defined by Fourier–Jacobi series”, Proc. Amer. Math. Soc., 146 (2018), 2027–2038 | DOI | MR | Zbl

[16] Guella J. C., Menegatto V. A., “Unitarily invariant strictly positive definite kernels on spheres”, Positivity, 22 (2018), 91–103 | DOI | MR | Zbl

[17] Guella J. C., Menegatto V. A., “Schoenberg's theorem for positive definite functions on products: a unifying framework”, J. Fourier Anal. Appl. (to appear) | DOI

[18] Helgason S., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs, 83, Amer. Math. Soc., Providence, RI, 2000 | DOI | MR | Zbl

[19] Horn R. A., Johnson C. R., Matrix analysis, Cambridge University Press, Cambridge, 1990 | MR | Zbl

[20] Hylleraas E. A., “Linearization of products of Jacobi polynomials”, Math. Scand., 10 (1962), 189–200 | DOI | MR | Zbl

[21] Koornwinder T., “Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula”, J. London Math. Soc., 18 (1978), 101–114 | DOI | MR | Zbl

[22] Menegatto V. A., “Strictly positive definite kernels on the Hilbert sphere”, Appl. Anal., 55 (1994), 91–101 | DOI | MR | Zbl

[23] Menegatto V. A., Oliveira C. P., Peron A. P., “Strictly positive definite kernels on subsets of the complex plane”, Comput. Math. Appl., 51 (2006), 1233–1250 | DOI | MR | Zbl

[24] Menegatto V. A., Peron A. P., “Positive definite kernels on complex spheres”, J. Math. Anal. Appl., 254 (2001), 219–232 | DOI | MR | Zbl

[25] Schoenberg I. J., “Positive definite functions on spheres”, Duke Math. J., 9 (1942), 96–108 | DOI | MR | Zbl

[26] Szegő G., Orthogonal polynomials, American Mathematical Society, Colloquium Publications, 23, 4th ed., Amer. Math. Soc., Providence, R.I., 1975 | MR

[27] Wang H.-C., “Two-point homogeneous spaces”, Ann. of Math., 55 (1952), 177–191 | DOI | MR | Zbl

[28] Wolf J. A., Spaces of constant curvature, 6th ed., AMS Chelsea Publishing, Providence, RI, 2011 | MR | Zbl

[29] Wünsche A., “Generalized Zernike or disc polynomials”, J. Comput. Appl. Math., 174 (2005), 135–163 | DOI | MR | Zbl