@article{SIGMA_2018_14_a110,
author = {Arata Komyo},
title = {The {Moduli} {Spaces} of {Parabolic} {Connections} with a {Quadratic} {Differential} and {Isomonodromic} {Deformations}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a110/}
}
TY - JOUR AU - Arata Komyo TI - The Moduli Spaces of Parabolic Connections with a Quadratic Differential and Isomonodromic Deformations JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a110/ LA - en ID - SIGMA_2018_14_a110 ER -
%0 Journal Article %A Arata Komyo %T The Moduli Spaces of Parabolic Connections with a Quadratic Differential and Isomonodromic Deformations %J Symmetry, integrability and geometry: methods and applications %D 2018 %V 14 %U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a110/ %G en %F SIGMA_2018_14_a110
Arata Komyo. The Moduli Spaces of Parabolic Connections with a Quadratic Differential and Isomonodromic Deformations. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a110/
[1] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl
[2] Beilinson A., Bernstein J., “A proof of Jantzen conjectures”, I. M. Gel'fand Seminar, Adv. Soviet Math., 16, Amer. Math. Soc., Providence, RI, 1993, 1–50 | MR | Zbl
[3] Beilinson A., Kazhdan D., Flat projective connection, unpublished
[4] Beilinson A. A., Schechtman V. V., “Determinant bundles and Virasoro algebras”, Comm. Math. Phys., 118 (1988), 651–701 | DOI | MR | Zbl
[5] Ben-Zvi D., Biswas I., “Theta functions and Szegő kernels”, Int. Math. Res. Not., 2003 (2003), 1305–1340, arXiv: math.AG/0211441 | DOI | MR | Zbl
[6] Ben-Zvi D., Biswas I., “Opers and theta functions”, Adv. Math., 181 (2004), 368–395, arXiv: math.AG/0204301 | DOI | MR | Zbl
[7] Ben-Zvi D., Frenkel E., “Geometric realization of the Segal–Sugawara construction”, Topology, Geometry and Quantum Field Theory, London Math. Soc. Lecture Note Ser., 308, Cambridge University Press, Cambridge, 2004, 46–97, arXiv: math.AG/0301206 | DOI | MR | Zbl
[8] Bloch S., Esnault H., Relative algebraic differential characters, arXiv: math.AG/9912015
[9] Boalch P., “Symplectic manifolds and isomonodromic deformations”, Adv. Math., 163 (2001), 137–205 | DOI | MR | Zbl
[10] Faltings G., “Stable $G$-bundles and projective connections”, J. Algebraic Geom., 2 (1993), 507–568 | MR | Zbl
[11] Goldman W. M., “The symplectic nature of fundamental groups of surfaces”, Adv. Math., 54 (1984), 200–225 | DOI | MR | Zbl
[12] Hitchin N., “The self-duality equations on a Riemann surface”, Proc. London Math. Soc., 55 (1987), 59–126 | DOI | MR | Zbl
[13] Hitchin N., “Geometrical aspects of Schlesinger's equation”, J. Geom. Phys., 23 (1997), 287–300 | DOI | MR | Zbl
[14] Hurtubise J., “On the geometry of isomonodromic deformations”, J. Geom. Phys., 58 (2008), 1394–1406, arXiv: 0804.0249 | DOI | MR | Zbl
[15] Inaba M.-A., “Moduli of parabolic connections on curves and the Riemann–Hilbert correspondence”, J. Algebraic Geom., 22 (2013), 407–480, arXiv: math.AG/0602004 | DOI | MR | Zbl
[16] Inaba M.-A., Iwasaki K., Saito M.-H., “Moduli of stable parabolic connections, Riemann–Hilbert correspondence and geometry of Painlevé equation of type VI, Part I”, Publ. Res. Inst. Math. Sci., 42 (2006), 987–1089, arXiv: math.AG/0309342 | DOI | MR | Zbl
[17] Iwasaki K., “Moduli and deformation for Fuchsian projective connections on a Riemann surface”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38 (1991), 431–531 | MR | Zbl
[18] Komyo A., Hamiltonian structures of isomonodromic deformations on moduli spaces of parabolic connections, arXiv: 1611.03601 | MR
[19] Krichever I., “Isomonodromy equations on algebraic curves, canonical transformations and Whitham equations”, Mosc. Math. J., 2 (2002), 717–752, arXiv: hep-th/0112096 | MR | Zbl
[20] Narasimhan M. S., Seshadri C. S., “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math., 82 (1965), 540–567 | DOI | MR | Zbl
[21] Simpson C. T., “Moduli of representations of the fundamental group of a smooth projective variety. I”, Inst. Hautes Études Sci. Publ. Math., 1994, 47–129 | DOI | MR | Zbl
[22] Simpson C. T., “Moduli of representations of the fundamental group of a smooth projective variety. II”, Inst. Hautes Études Sci. Publ. Math., 1994, 5–79 | DOI | MR