$k$-Dirac Complexes
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is the first paper in a series of two papers. In this paper we construct complexes of invariant differential operators which live on homogeneous spaces of $|2|$-graded parabolic geometries of some particular type. We call them $k$-Dirac complexes. More explicitly, we will show that each $k$-Dirac complex arises as the direct image of a relative BGG sequence and so this fits into the scheme of the Penrose transform. We will also prove that each $k$-Dirac complex is formally exact, i.e., it induces a long exact sequence of infinite (weighted) jets at any fixed point. In the second part of the series we use this information to show that each $k$-Dirac complex is exact at the level of formal power series at any point and that it descends to a resolution of the $k$-Dirac operator studied in Clifford analysis.
Keywords: Penrose transform; complexes of invariant differential operators; relative BGG complexes; formal exactness; weighted jets.
@article{SIGMA_2018_14_a11,
     author = {Tom\'a\v{s} Sala\v{c}},
     title = {$k${-Dirac} {Complexes}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a11/}
}
TY  - JOUR
AU  - Tomáš Salač
TI  - $k$-Dirac Complexes
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a11/
LA  - en
ID  - SIGMA_2018_14_a11
ER  - 
%0 Journal Article
%A Tomáš Salač
%T $k$-Dirac Complexes
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a11/
%G en
%F SIGMA_2018_14_a11
Tomáš Salač. $k$-Dirac Complexes. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a11/

[1] Baston R. J., “Quaternionic complexes”, J. Geom. Phys., 8 (1992), 29–52 | DOI | MR

[2] Baston R. J., Eastwood M. G., The Penrose transform. Its interaction with representation theory, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1989 | MR

[3] Bureš J., Damiano A., Sabadini I., “Explicit resolutions for the complex of several Fueter operators”, J. Geom. Phys., 57 (2007), 765–775 | DOI | MR

[4] Bureš J., Souček V., “Complexes of invariant operators in several quaternionic variables”, Complex Var. Elliptic Equ., 51 (2006), 463–485 | DOI | MR

[5] Čap A., Salač T., “Parabolic conformally symplectic structures I: definition and distinguished connections”, Forum Math. (to appear) , arXiv: 1605.01161 | DOI

[6] Čap A., Salač T., “Parabolic conformally symplectic structures II: parabolic contactification”, Ann. Mat. Pura Appl. (to appear) , arXiv: 1605.01897 | DOI

[7] Čap A., Salač T., Parabolic conformally symplectic structures III: invariant differential operators and complexes, arXiv: 1701.01306

[8] Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR

[9] Čap A., Slovák J., Souček V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math., 154 (2001), 97–113, arXiv: math.DG/0001164 | DOI | MR

[10] Čap A., Souček V., “Relative BGG sequences: I. Algebra”, J. Algebra, 463 (2016), 188–210, arXiv: 1510.03331 | DOI | MR

[11] Čap A., Souček V., “Relative BGG sequences: II. BGG machinery and invariant operators”, Adv. Math., 320 (2017), 1009–1062, arXiv: 1510.03986 | DOI | MR

[12] Colombo F., Sabadini I., Sommen F., Struppa D. C., Analysis of Dirac systems and computational algebra, Progress in Mathematical Physics, 39, Birkhäuser Boston, Inc., Boston, MA, 2004 | DOI | MR

[13] Colombo F., Souček V., Struppa D. C., “Invariant resolutions for several Fueter operators”, J. Geom. Phys., 56 (2006), 1175–1191 | DOI | MR

[14] Franek P., “Generalized Dolbeault sequences in parabolic geometry”, J. Lie Theory, 18 (2008), 757–774, arXiv: 0710.0093 | MR

[15] Goodman R., Wallach N. R., Symmetry, representations, and invariants, Graduate Texts in Mathematics, 255, Springer, Dordrecht, 2009 | DOI | MR

[16] Hörmander L., An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J. – Toronto, Ont. – London, 1966 | MR

[17] Krump L., “A resolution for the Dirac operator in four variables in dimension 6”, Adv. Appl. Clifford Algebr., 19 (2009), 365–374 | DOI | MR

[18] Morimoto T., “Lie algebras, geometric structures and differential equations on filtered manifolds”, Lie Groups, Geometric Structures and Differential Equations – One Hundred Years After Sophus Lie (Kyoto/Nara, 1999), Adv. Stud. Pure Math., 37, Math. Soc. Japan, Tokyo, 2002, 205–252 | MR

[19] Nacinovich M., “Complex analysis and complexes of differential operators”, Complex Analysis (Trieste, 1980), Lecture Notes in Math., 950, Springer, Berlin–New York, 1982, 105–195 | DOI | MR

[20] Sabadini I., Struppa D. C., Sommen F., Van Lancker P., “Complexes of Dirac operators in Clifford algebras”, Math. Z., 239 (2002), 293–320 | DOI | MR

[21] Salač T., “$k$-Dirac operator and the Cartan–Kähler theorem”, Arch. Math. (Brno), 49 (2013), 333–346, arXiv: 1304.0956 | DOI | MR

[22] Salač T., “$k$-Dirac operator and parabolic geometries”, Complex Anal. Oper. Theory, 8 (2014), 383–408, arXiv: 1201.0355 | DOI | MR

[23] Salač T., “$k$-Dirac operator and the Cartan–Kähler theorem for weighted differential operators”, Differential Geom. Appl., 49 (2016), 351–371, arXiv: 1601.08077 | DOI | MR

[24] Salač T., “Resolution of the $k$-Dirac operator”, Adv. Appl. Clifford Algebr., 28:3 (2018), 19 pp., arXiv: 1705.10168 | DOI | MR

[25] Spencer D. C., “Overdetermined systems of linear partial differential equations”, Bull. Amer. Math. Soc., 75 (1969), 179–239 | DOI | MR

[26] Ward R. S., Wells Jr. R.O., Twistor geometry and field theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1990 | DOI | MR

[27] Wells Jr. R.O., Differential analysis on complex manifolds, Graduate Texts in Mathematics, 65, 2nd ed., Springer-Verlag, New York–Berlin, 1980 | DOI | MR