Zhegalkin Zebra Motives Digital Recordings of Mirror Symmetry
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Zhegalkin zebra motives are tilings of the plane by black and white polygons representing certain ${\mathbb F}_2$-valued functions on ${\mathbb R}^2$. They exhibit a rich geometric structure and provide easy to draw insightful visualizations of many topics in the physics and mathematics literature. The present paper gives some pieces of a general theory and a few explicit examples. Many more examples will be shown in the forthcoming article “Zhegalkin zebra motives: algebra and geometry in black and white”.
Keywords: Zhegalkin polynomials; motives; dimer models; mirror symmetry.
@article{SIGMA_2018_14_a109,
     author = {Jan Stienstra},
     title = {Zhegalkin {Zebra} {Motives} {Digital} {Recordings} of {Mirror} {Symmetry}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a109/}
}
TY  - JOUR
AU  - Jan Stienstra
TI  - Zhegalkin Zebra Motives Digital Recordings of Mirror Symmetry
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a109/
LA  - en
ID  - SIGMA_2018_14_a109
ER  - 
%0 Journal Article
%A Jan Stienstra
%T Zhegalkin Zebra Motives Digital Recordings of Mirror Symmetry
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a109/
%G en
%F SIGMA_2018_14_a109
Jan Stienstra. Zhegalkin Zebra Motives Digital Recordings of Mirror Symmetry. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a109/

[1] Amariti A., Forcella D., Mariotti A., “Integrability on the master space”, J. High Energy Phys., 2012:6 (2012), 053, 44 pp., arXiv: 1203.1616 | DOI | MR

[2] Batyrev V. V., “Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties”, J. Algebraic Geom., 3 (1994), 493–535, arXiv: alg-geom/9310003 | MR | Zbl

[3] Batyrev V. V., Borisov L. A., “Dual cones and mirror symmetry for generalized Calabi–Yau manifolds”, Mirror Symmetry, II, AMS/IP Stud. Adv. Math., 1, eds. B. Greene, S. T. Yau, Amer. Math. Soc., Providence, RI, 1997, 71–86, arXiv: alg-geom/9402002 | MR

[4] Bobenko A. I., “Surfaces from circles”, Discrete Differential Geometry, Oberwolfach Semin., 38, Birkhäuser, Basel, 2008, 3–35, arXiv: 0707.1318 | DOI | MR | Zbl

[5] Bocklandt R., “A dimer ABC”, Bull. Lond. Math. Soc., 48 (2016), 387–451, arXiv: 1510.04242 | DOI | MR | Zbl

[6] Broomhead N., Dimer models and Calabi–Yau algebras, Mem. Amer. Math. Soc., 215, 2012, viii+86 pp., arXiv: 0901.4662 | DOI | MR

[7] Davey J., Hanany A., Pasukonis J., “On the classification of brane tilings”, J. High Energy Phys., 2010:1 (2010), 078, 30 pp., arXiv: 0901.4662 | DOI | MR | Zbl

[8] Forcella D., Hanany A., He Y.-H., Zaffaroni A., “The master space of ${\mathcal N}=1$ gauge theories”, J. High Energy Phys., 2008:8 (2008), 012, 71 pp., arXiv: 0801.1585 | DOI | MR

[9] Fulton W., Introduction to toric varieties, Annals of Mathematics Studies, 131, Princeton University Press, Princeton, NJ, 1993 | DOI | MR | Zbl

[10] Goncharov A. B., Kenyon R., “Dimers and cluster integrable systems”, Ann. Sci. Éc. Norm. Supér. (4), 46 (2013), 747–813, arXiv: 1107.5588 | DOI | MR | Zbl

[11] Gulotta D. R., “Properly ordered dimers, $R$-charges, and an efficient inverse algorithm”, J. High Energy Phys., 2008:10 (2008), 014, 31 pp., arXiv: 0807.3012 | DOI | MR | Zbl

[12] Hanany A., Seong R.-K., “Brane tilings and reflexive polygons”, Fortschr. Phys., 60 (2012), 695–803, arXiv: 1201.2614 | DOI | MR | Zbl

[13] Hartshorne R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg, 1977 | DOI | MR | Zbl

[14] Lando S. K., Zvonkin A. K., Graphs on surfaces and their applications, Encyclopaedia of Mathematical Sciences, 141, Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[15] Murre J. P., Nagel J., Peters C. A. M., Lectures on the theory of pure motives, University Lecture Series, 61, Amer. Math. Soc., Providence, RI, 2013 | DOI | MR | Zbl

[16] Schneps L. (ed.), The Grothendieck theory of dessins d'enfants, London Mathematical Society Lecture Note Series, 200, Cambridge University Press, Cambridge, 1994 | DOI | MR | Zbl

[17] Vidunas R., He Y.-H., “Composite genus one Belyi maps”, Indag. Math. (N.S.), 29 (2018), 916–947, arXiv: 1610.08075 | DOI | MR | Zbl