@article{SIGMA_2018_14_a108,
author = {Christian Berg and Ryszard Szwarc},
title = {Inverse of {Infinite} {Hankel} {Moment} {Matrices}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a108/}
}
Christian Berg; Ryszard Szwarc. Inverse of Infinite Hankel Moment Matrices. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a108/
[1] Akhiezer N. I., The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965 | MR
[2] Berg C., “Indeterminate moment problems and the theory of entire functions”, J. Comput. Appl. Math., 65 (1995), 27–55 | DOI | MR | Zbl
[3] Berg C., Chen Y., Ismail M. E. H., “Small eigenvalues of large Hankel matrices: the indeterminate case”, Math. Scand., 91 (2002), 67–81, arXiv: math.CA/9907110 | DOI | MR | Zbl
[4] Berg C., Christensen J. P. R., “Density questions in the classical theory of moments”, Ann. Inst. Fourier (Grenoble), 31 (1981), 99–114 | DOI | MR | Zbl
[5] Berg C., Pedersen H. L., “On the order and type of the entire functions associated with an indeterminate Hamburger moment problem”, Ark. Mat., 32 (1994), 1–11 | DOI | MR | Zbl
[6] Berg C., Pedersen H. L., “Logarithmic order and type of indeterminate moment problems (with an appendix by Walter Hayman)”, Difference Equations, Special Functions and Orthogonal Polynomials, World Sci. Publ., Hackensack, NJ, 2007, 51–79 | DOI | MR | Zbl
[7] Berg C., Szwarc R., “The smallest eigenvalue of Hankel matrices”, Constr. Approx., 34 (2011), 107–133, arXiv: 0906.4506 | DOI | MR | Zbl
[8] Berg C., Szwarc R., “On the order of indeterminate moment problems”, Adv. Math., 250 (2014), 105–143, arXiv: 1310.0247 | DOI | MR | Zbl
[9] Berg C., Szwarc R., “Symmetric moment problems and a conjecture of Valent”, Sb. Math., 208 (2017), 335–359, arXiv: 1509.06540 | DOI | MR | Zbl
[10] Berg C., Valent G., “The Nevanlinna parametrization for some indeterminate Stieltjes moment problems associated with birth and death processes”, Methods Appl. Anal., 1 (1994), 169–209 | DOI | MR | Zbl
[11] Bochkov I., Polynomial birth-death processes and the second conjecture of Valent, arXiv: 1712.03571
[12] Chen Y., Ismail M. E. H., “Some indeterminate moment problems and Freud-like weights”, Constr. Approx., 14 (1998), 439–458 | DOI | MR | Zbl
[13] Chihara T. S., “Indeterminate symmetric moment problems”, J. Math. Anal. Appl., 85 (1982), 331–346 | DOI | MR | Zbl
[14] Christiansen J. S., Ismail M. E. H., “A moment problem and a family of integral evaluations”, Trans. Amer. Math. Soc., 358 (2006), 4071–4097 | DOI | MR | Zbl
[15] Escribano C., Gonzalo R., Torrano E., “On the inversion of infinite moment matrices”, Linear Algebra Appl., 475 (2015), 292–305, arXiv: 1311.3473 | DOI | MR | Zbl
[16] Gasper G., Rahman M., Basic hypergeometric series, Encyclopedia of Mathematics and its Applications, 96, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl
[17] Gilewicz J., Leopold E., Valent G., “New Nevanlinna matrices for orthogonal polynomials related to cubic birth and death processes”, J. Comput. Appl. Math., 178 (2005), 235–245 | DOI | MR | Zbl
[18] Gradshteyn I. S., Ryzhik I. M., Table of integrals, series, and products, 6th ed., Academic Press, Inc., San Diego, CA, 2000 | MR | Zbl
[19] Ismail M. E. H., Masson D. R., “$q$-Hermite polynomials, biorthogonal rational functions, and $q$-beta integrals”, Trans. Amer. Math. Soc., 346 (1994), 63–116 | DOI | MR | Zbl
[20] Koekoek R., Swarttouw R. F., The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, Report 98-17, 1998 http://aw.twi.tudelft.nl/k̃oekoek/askey/
[21] Levin B. Ya., Lectures on entire functions, Translations of Mathematical Monographs, 150, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl
[22] Romanov R., “Order problem for canonical systems and a conjecture of Valent”, Trans. Amer. Math. Soc., 369 (2017), 1061–1078, arXiv: 1502.04402 | DOI | MR | Zbl
[23] Shohat J. A., Tamarkin J. D., The Problem of Moments, American Mathematical Society Mathematical Surveys, 1, Amer. Math. Soc., New York, 1943 | MR | Zbl
[24] Valent G., “Indeterminate moment problems and a conjecture on the growth of the entire functions in the Nevanlinna parametrization”, Applications and Computation of Orthogonal Polynomials (Oberwolfach, 1998), Internat. Ser. Numer. Math., 131, Birkhäuser, Basel, 1999, 227–237 | MR | Zbl
[25] Yafaev D. R., “Unbounded Hankel operators and moment problems”, Integral Equations Operator Theory, 85 (2016), 289–300, arXiv: 1601.08042 | DOI | MR | Zbl