@article{SIGMA_2018_14_a107,
author = {Martin Raum},
title = {Hyper-Algebras of {Vector-Valued} {Modular} {Forms}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a107/}
}
Martin Raum. Hyper-Algebras of Vector-Valued Modular Forms. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a107/
[1] Furusawa M., Morimoto K., “On special Bessel periods and the Gross-Prasad conjecture for ${\rm SO}(2n+1)\times{\rm SO}(2)$”, Math. Ann., 368 (2017), 561–586, arXiv: 1611.05567 | DOI | MR | Zbl
[2] Hart W., Johansson F., Pancratz S., FLINT: Fast Library for Number Theory, v2.5.2 ed., , 2015 http://flintlib.org
[3] Helgason S., Differential geometry and symmetric spaces, Pure and Applied Mathematics, 12, Academic Press, New York–London, 1962 | MR | Zbl
[4] Holt D. F., Eick B., O'Brien E. A., Handbook of computational group theory, Discrete Mathematics and its Applications (Boca Raton), Chapman Hall/CRC, Boca Raton, FL, 2005 | DOI | MR | Zbl
[5] Imamoḡlu O., Kohnen W., “Representations of integers as sums of an even number of squares”, Math. Ann., 333 (2005), 815–829 | DOI | MR | Zbl
[6] Klemm A., Poretschkin M., Schimannek T., Westerholt-Raum M., Direct integration for genus two mirror curves, arXiv: 1502.00557
[7] Kohnen W., Skoruppa N.-P., “A certain Dirichlet series attached to Siegel modular forms of degree two”, Invent. Math., 95 (1989), 541–558 | DOI | MR | Zbl
[8] Kohnen W., Zagier D., “Modular forms with rational periods”, Modular Forms (Durham, 1983), Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, 197–249 | MR
[9] Krieg A., Hecke algebras, Mem. Amer. Math. Soc., 87, 1990, x+158 pp. | DOI | MR
[10] Krieg A., Raum M., “The functional equation for the twisted spinor $L$-series of genus 2”, Abh. Math. Semin. Univ. Hambg., 83 (2013), 29–52, arXiv: 0907.2767 | DOI | MR | Zbl
[11] Marks C., Mason G., “Structure of the module of vector-valued modular forms”, J. Lond. Math. Soc., 82 (2010), 32–48, arXiv: 0901.4367 | DOI | MR | Zbl
[12] PARI/GP, Version 2.7.3, , 2015 http://pari.math.u-bordeaux.fr/
[13] Pitale A., Saha A., Schmidt R., Representations of $\mathrm{SL}_2(\mathbb{R})$ and nearly holomorphic modular forms, arXiv: 1501.00525
[14] Rankin R. A., “The scalar product of modular forms”, Proc. London Math. Soc., 2 (1952), 198–217 | DOI | MR | Zbl
[15] Raum M., “Efficiently generated spaces of classical Siegel modular forms and the Böcherer conjecture”, J. Aust. Math. Soc., 89 (2010), 393–405, arXiv: 1002.3883 | DOI | MR | Zbl
[16] Sage Mathematics Software, Version 6.9, , 2015 http://www.sagemath.org
[17] Shimura G., “Nearly holomorphic functions on Hermitian symmetric spaces”, Math. Ann., 278 (1987), 1–28 | DOI | MR | Zbl
[18] Sullivan J. B., “Representations of the hyperalgebra of an algebraic group”, Amer. J. Math., 100 (1978), 643–652 | DOI | MR | Zbl
[19] Taylor K., Analytic continuation of nonanalytic vector-valued Eisenstein series, Ph.D. Thesis, Temple University, 2006 | MR
[20] Waldspurger J.-L., “Sur les coefficients de Fourier des formes modulaires de poids demi-entier”, J. Math. Pures Appl., 60 (1981), 375–484 | MR | Zbl
[21] Wall H. S., “Hypergroups”, Amer. J. Math., 59 (1937), 77–98 | DOI | MR
[22] Wallach N. R., Real reductive groups. I, Pure and Applied Mathematics, 132, Academic Press, Inc., Boston, MA, 1988 | MR | Zbl
[23] Westerholt-Raum M., “Products of vector valued Eisenstein series”, Forum Math., 29 (2017), 157–186, arXiv: 1411.3877 | DOI | MR
[24] Westerholt-Raum M., “Harmonic weak Siegel–Maaß forms I: preimages of non-holomorphic Saito–Kurokawa lifts”, Int. Math. Res. Not., 2018 (2018), 1442–1472, arXiv: 1510.03342 | DOI | MR