@article{SIGMA_2018_14_a105,
author = {Victor Yu. Novokshenov},
title = {Generalized {Hermite} {Polynomials} and {Monodromy-Free} {Schr\"odinger} {Operators}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a105/}
}
Victor Yu. Novokshenov. Generalized Hermite Polynomials and Monodromy-Free Schrödinger Operators. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a105/
[1] Adler V. E., “A modification of Crum's method”, Theoret. and Math. Phys., 101 (1994), 1381–1386 | DOI | MR | Zbl
[2] Adler V. E., “Nonlinear chains and Painlevé equations”, Phys. D, 73 (1994), 335–351 | DOI | MR | Zbl
[3] Bermúdez D., Fernández C. D. J., “Supersymmetric quantum mechanics and Painlevé IV equation”, SIGMA, 7 (2011), 025, 14 pp., arXiv: 1012.0290 | DOI | MR | Zbl
[4] Bermúdez D., Fernández C. D. J., “Complex solutions to the Painlevé IV equation through supersymmetric quantum mechanics”, AIP Conf. Proc., 1420 (2012), 47–51, arXiv: 1110.0555 | DOI
[5] Buckingham R., “Large-degree asymptotics of rational Painlevé-IV functions associated to generalized Hermite polynomials”, Int. Math. Res. Not. (to appear) , arXiv: 1706.09005 | DOI
[6] Bureau F. J., “Sur un système d'équations différentielles non linéaires”, Acad. Roy. Belg. Bull. Cl. Sci. (5), 66 (1980), 280–284 | MR | Zbl
[7] Chen Y., Feigin M. V., “Painlevé IV and degenerate Gaussian unitary ensembles”, J. Phys. A: Math. Gen., 39 (2006), 12381–12393, arXiv: math-ph/0606064 | DOI | MR | Zbl
[8] Clarkson P. A., “Special polynomials associated with rational solutions of the Painlevé equations and applications to soliton equations”, Comput. Methods Funct. Theory, 6 (2006), 329–401 | DOI | MR | Zbl
[9] Crum M. M., “Associated Sturm–Liouville systems”, Quart. J. Math. Oxford, 6 (1955), 121–127 | DOI | MR
[10] Deift P. A., Orthogonal polynomials and random matrices: a Riemann–Hilbert approach, v. 3, Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, 1999 | MR
[11] Duistermaat J. J., Grünbaum F. A., “Differential equations in the spectral parameter”, Comm. Math. Phys., 103 (1986), 177–240 | DOI | MR | Zbl
[12] Felder G., Hemery A. D., Veselov A. P., “Zeros of Wronskians of Hermite polynomials and Young diagrams”, Phys. D, 241 (2012), 2131–2137, arXiv: 1005.2695 | DOI | MR | Zbl
[13] Fokas A. S., Its A. R., Kapaev A. A., Novokshenov V. Yu., Painlevé transcendents. The Riemann–Hilbert approach, Mathematical Surveys and Monographs, 128, Amer. Math. Soc., Providence, RI, 2006 | DOI | MR
[14] Forrester P. J., Log-gases and random matrices, London Mathematical Society Monographs Series, 34, Princeton University Press, Princeton, NJ, 2010 | DOI | MR | Zbl
[15] Kapaev A. A., Hubert E., “A note on the Lax pairs for Painlevé equations”, J. Phys. A: Math. Gen., 32 (1999), 8145–8156 | DOI | MR | Zbl
[16] Lukaševič N. A., “The theory of Painlevé's fourth equation”, Differ. Uravn., 3 (1967), 771–780 | MR | Zbl
[17] Masoero D., Roffelsen P., “Poles of Painlevé IV rationals and their distribution”, SIGMA, 14 (2018), 002, 49 pp., arXiv: 1707.05222 | DOI | MR | Zbl
[18] McKean H. P., Trubowitz E., “The spectral class of the quantum-mechanical harmonic oscillator”, Comm. Math. Phys., 82 (1982), 471–495 | DOI | MR | Zbl
[19] Noumi M., Yamada Y., “Symmetries in the fourth Painlevé equation and Okamoto polynomials”, Nagoya Math. J., 153 (1999), 53–86, arXiv: q-alg/9708018 | DOI | MR | Zbl
[20] Novokshenov V. Yu., Schelkonogov A. A., “Distribution of zeroes to generalized Hermite polynomials”, Ufa Math. J., 7 (2015), 54–66 | DOI | MR
[21] Oblomkov A. A., “Monodromy-free Schrödinger operators with quadratically increasing potential”, Theoret. and Math. Phys., 121 (1999), 374–386 | DOI | MR | Zbl
[22] Plancherel M., Rotach W., “Sur les valeurs asymptotiques des polynomes d'Hermite $H_n(x)=(-I)^n {\rm e}^{\frac{{x^2}}{2}} \frac{{{\rm d}^n }}{{{\rm d}x^n }}\big({{\rm e}^{-\frac{{x^2}}{2}}}\big)$”, Comment. Math. Helv., 1 (1929), 227–254 | DOI | MR | Zbl
[23] Saff E. B., Totik V., Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, 316, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[24] Stieltjes T. J., “Sur certains polynômes: qui vérifient une équation différentielle linéaire du second ordre et sur la theorie des fonctions de Lamé”, Acta Math., 6 (1885), 321–326 | DOI | MR
[25] Veselov A. P., “On Stieltjes relations, Painlevé-IV hierarchy and complex monodromy”, J. Phys. A: Math. Gen., 34 (2001), 3511–3519, arXiv: math-ph/0012040 | DOI | MR | Zbl
[26] Veselov A. P., Shabat A. B., “Dressing chains and the spectral theory of the Schrödinger operator”, Funct. Anal. Appl., 27 (1993), 81–96 | DOI | MR | Zbl
[27] Witten E., “Supersymmetry and Morse theory”, J. Differential Geom., 17 (1982), 661–692 | DOI | MR | Zbl
[28] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskiĭ L. P., Soliton theory: inverse scattering method, Nauka, M., 1980 | MR