Quantum Abelian Yang–Mills Theory on Riemannian Manifolds with Boundary
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We quantize abelian Yang–Mills theory on Riemannian manifolds with boundaries in any dimension. The quantization proceeds in two steps. First, the classical theory is encoded into an axiomatic form describing solution spaces associated to manifolds. Second, the quantum theory is constructed from the classical axiomatic data in a functorial manner. The target is general boundary quantum field theory, a TQFT-type axiomatic formulation of quantum field theory.
Keywords: Yang–Mills theory; TQFT; Riemannian manifolds.
@article{SIGMA_2018_14_a104,
     author = {Homero G. D{\'\i}az-Mar{\'\i}n and Robert Oeckl},
     title = {Quantum {Abelian} {Yang{\textendash}Mills} {Theory} on {Riemannian} {Manifolds} with {Boundary}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a104/}
}
TY  - JOUR
AU  - Homero G. Díaz-Marín
AU  - Robert Oeckl
TI  - Quantum Abelian Yang–Mills Theory on Riemannian Manifolds with Boundary
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a104/
LA  - en
ID  - SIGMA_2018_14_a104
ER  - 
%0 Journal Article
%A Homero G. Díaz-Marín
%A Robert Oeckl
%T Quantum Abelian Yang–Mills Theory on Riemannian Manifolds with Boundary
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a104/
%G en
%F SIGMA_2018_14_a104
Homero G. Díaz-Marín; Robert Oeckl. Quantum Abelian Yang–Mills Theory on Riemannian Manifolds with Boundary. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a104/

[1] Ashtekar A., Magnon A., “Quantum fields in curved space-times”, Proc. Roy. Soc. London Ser. A, 346 (1975), 375–394 | DOI | MR | Zbl

[2] Atiyah M., “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 1988, 175–186 | DOI | MR | Zbl

[3] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl

[4] Blau M., Thompson G., “Quantum Yang–Mills theory on arbitrary surfaces”, Internat. J. Modern Phys. A, 7 (1992), 3781–3806 | DOI | MR

[5] Cattaneo A. S., Mnev P., Reshetikhin N., “Semiclassical quantization of classical field theories”, Mathematical Aspects of Quantum Field Theories, Math. Phys. Stud., Springer, Cham, 2015, 275–324, arXiv: 1311.2490 | DOI | MR | Zbl

[6] Cattaneo A. S., Mnev P., Reshetikhin N., “Perturbative quantum gauge theories on manifolds with boundary”, Comm. Math. Phys., 357 (2018), 631–730, arXiv: 1507.01221 | DOI | MR | Zbl

[7] Díaz-Marín H. G., “General boundary formulation for $n$-dimensional classical abelian theory with corners”, SIGMA, 11 (2015), 048, 35 pp., arXiv: 1407.4741 | DOI | MR

[8] Díaz-Marín H. G., “Dirichlet to Neumann operator for abelian Yang–Mills gauge fields”, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750153, 25 pp., arXiv: 1508.00449 | DOI | MR

[9] Fine D. S., “Quantum Yang–Mills on a Riemann surface”, Comm. Math. Phys., 140 (1991), 321–338 | DOI | MR | Zbl

[10] Gallot S., Hulin D., Lafontaine J., Riemannian geometry, Universitext, 3rd ed., Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl

[11] Kandel S., “Functorial quantum field theory in the Riemannian setting”, Adv. Theor. Math. Phys., 20 (2016), 1443–1471, arXiv: 1502.07219 | DOI | MR | Zbl

[12] Lee J., Wald R. M., “Local symmetries and constraints”, J. Math. Phys., 31 (1990), 725–743 | DOI | MR | Zbl

[13] Oeckl R., “General boundary quantum field theory: foundations and probability interpretation”, Adv. Theor. Math. Phys., 12 (2008), 319–352, arXiv: hep-th/0509122 | DOI | MR | Zbl

[14] Oeckl R., “Two-dimensional quantum Yang–Mills theory with corners”, J. Phys. A: Math. Theor., 41 (2008), 135401, 20 pp., arXiv: hep-th/0608218 | DOI | MR | Zbl

[15] Oeckl R., “Affine holomorphic quantization”, J. Geom. Phys., 62 (2012), 1373–1396, arXiv: 1104.5527 | DOI | MR | Zbl

[16] Oeckl R., “Holomorphic quantization of linear field theory in the general boundary formulation”, SIGMA, 8 (2012), 050, 31 pp., arXiv: 1009.5615 | DOI | MR | Zbl

[17] Oeckl R., “Free Fermi and Bose fields in TQFT and GBF”, SIGMA, 9 (2013), 028, 46 pp., arXiv: 1208.5038 | DOI | MR | Zbl

[18] Oeckl R., “A positive formalism for quantum theory in the general boundary formulation”, Found. Phys., 43 (2013), 1206–1232, arXiv: 1212.5571 | DOI | MR | Zbl

[19] Oeckl R., “Schrödinger–Feynman quantization and composition of observables in general boundary quantum field theory”, Adv. Theor. Math. Phys., 19 (2015), 451–506, arXiv: 1201.1877 | DOI | MR | Zbl

[20] Oeckl R., “A local and operational framework for the foundations of physics”, Adv. Theor. Math. Phys. (to appear) , arXiv: 1610.09052 | MR

[21] Rusakov B. Ye., “Loop averages and partition functions in ${\rm U}(N)$ gauge theory on two-dimensional manifolds”, Modern Phys. Lett. A, 5 (1990), 693–703 | DOI | MR | Zbl

[22] Schwarz G., Hodge decomposition – a method for solving boundary value problems, Lecture Notes in Math., 1607, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl

[23] Sengupta A. N., “The moduli space of flat connections on oriented surfaces with boundary”, J. Funct. Anal., 190 (2002), 179–232 | DOI | MR | Zbl

[24] Verlinde E., “Global aspects of electric-magnetic duality”, Nuclear Phys. B, 455 (1995), 211–225, arXiv: hep-th/9506011 | DOI | MR | Zbl

[25] Weinstein A., “Symplectic categories”, Port. Math., 67 (2010), 261–278, arXiv: 0911.4133 | DOI | MR | Zbl

[26] Witten E., “On quantum gauge theories in two dimensions”, Comm. Math. Phys., 141 (1991), 153–209 | DOI | MR | Zbl

[27] Woodhouse N. M. J., Geometric quantization, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1992 | MR

[28] Zuckerman G. J., “Action principles and global geometry”, Mathematical Aspects of String Theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987, 259–284 | DOI | MR