@article{SIGMA_2018_14_a104,
author = {Homero G. D{\'\i}az-Mar{\'\i}n and Robert Oeckl},
title = {Quantum {Abelian} {Yang{\textendash}Mills} {Theory} on {Riemannian} {Manifolds} with {Boundary}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a104/}
}
TY - JOUR AU - Homero G. Díaz-Marín AU - Robert Oeckl TI - Quantum Abelian Yang–Mills Theory on Riemannian Manifolds with Boundary JO - Symmetry, integrability and geometry: methods and applications PY - 2018 VL - 14 UR - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a104/ LA - en ID - SIGMA_2018_14_a104 ER -
Homero G. Díaz-Marín; Robert Oeckl. Quantum Abelian Yang–Mills Theory on Riemannian Manifolds with Boundary. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a104/
[1] Ashtekar A., Magnon A., “Quantum fields in curved space-times”, Proc. Roy. Soc. London Ser. A, 346 (1975), 375–394 | DOI | MR | Zbl
[2] Atiyah M., “Topological quantum field theories”, Inst. Hautes Études Sci. Publ. Math., 1988, 175–186 | DOI | MR | Zbl
[3] Atiyah M. F., Bott R., “The Yang–Mills equations over Riemann surfaces”, Philos. Trans. Roy. Soc. London Ser. A, 308 (1983), 523–615 | DOI | MR | Zbl
[4] Blau M., Thompson G., “Quantum Yang–Mills theory on arbitrary surfaces”, Internat. J. Modern Phys. A, 7 (1992), 3781–3806 | DOI | MR
[5] Cattaneo A. S., Mnev P., Reshetikhin N., “Semiclassical quantization of classical field theories”, Mathematical Aspects of Quantum Field Theories, Math. Phys. Stud., Springer, Cham, 2015, 275–324, arXiv: 1311.2490 | DOI | MR | Zbl
[6] Cattaneo A. S., Mnev P., Reshetikhin N., “Perturbative quantum gauge theories on manifolds with boundary”, Comm. Math. Phys., 357 (2018), 631–730, arXiv: 1507.01221 | DOI | MR | Zbl
[7] Díaz-Marín H. G., “General boundary formulation for $n$-dimensional classical abelian theory with corners”, SIGMA, 11 (2015), 048, 35 pp., arXiv: 1407.4741 | DOI | MR
[8] Díaz-Marín H. G., “Dirichlet to Neumann operator for abelian Yang–Mills gauge fields”, Int. J. Geom. Methods Mod. Phys., 14 (2017), 1750153, 25 pp., arXiv: 1508.00449 | DOI | MR
[9] Fine D. S., “Quantum Yang–Mills on a Riemann surface”, Comm. Math. Phys., 140 (1991), 321–338 | DOI | MR | Zbl
[10] Gallot S., Hulin D., Lafontaine J., Riemannian geometry, Universitext, 3rd ed., Springer-Verlag, Berlin, 2004 | DOI | MR | Zbl
[11] Kandel S., “Functorial quantum field theory in the Riemannian setting”, Adv. Theor. Math. Phys., 20 (2016), 1443–1471, arXiv: 1502.07219 | DOI | MR | Zbl
[12] Lee J., Wald R. M., “Local symmetries and constraints”, J. Math. Phys., 31 (1990), 725–743 | DOI | MR | Zbl
[13] Oeckl R., “General boundary quantum field theory: foundations and probability interpretation”, Adv. Theor. Math. Phys., 12 (2008), 319–352, arXiv: hep-th/0509122 | DOI | MR | Zbl
[14] Oeckl R., “Two-dimensional quantum Yang–Mills theory with corners”, J. Phys. A: Math. Theor., 41 (2008), 135401, 20 pp., arXiv: hep-th/0608218 | DOI | MR | Zbl
[15] Oeckl R., “Affine holomorphic quantization”, J. Geom. Phys., 62 (2012), 1373–1396, arXiv: 1104.5527 | DOI | MR | Zbl
[16] Oeckl R., “Holomorphic quantization of linear field theory in the general boundary formulation”, SIGMA, 8 (2012), 050, 31 pp., arXiv: 1009.5615 | DOI | MR | Zbl
[17] Oeckl R., “Free Fermi and Bose fields in TQFT and GBF”, SIGMA, 9 (2013), 028, 46 pp., arXiv: 1208.5038 | DOI | MR | Zbl
[18] Oeckl R., “A positive formalism for quantum theory in the general boundary formulation”, Found. Phys., 43 (2013), 1206–1232, arXiv: 1212.5571 | DOI | MR | Zbl
[19] Oeckl R., “Schrödinger–Feynman quantization and composition of observables in general boundary quantum field theory”, Adv. Theor. Math. Phys., 19 (2015), 451–506, arXiv: 1201.1877 | DOI | MR | Zbl
[20] Oeckl R., “A local and operational framework for the foundations of physics”, Adv. Theor. Math. Phys. (to appear) , arXiv: 1610.09052 | MR
[21] Rusakov B. Ye., “Loop averages and partition functions in ${\rm U}(N)$ gauge theory on two-dimensional manifolds”, Modern Phys. Lett. A, 5 (1990), 693–703 | DOI | MR | Zbl
[22] Schwarz G., Hodge decomposition – a method for solving boundary value problems, Lecture Notes in Math., 1607, Springer-Verlag, Berlin, 1995 | DOI | MR | Zbl
[23] Sengupta A. N., “The moduli space of flat connections on oriented surfaces with boundary”, J. Funct. Anal., 190 (2002), 179–232 | DOI | MR | Zbl
[24] Verlinde E., “Global aspects of electric-magnetic duality”, Nuclear Phys. B, 455 (1995), 211–225, arXiv: hep-th/9506011 | DOI | MR | Zbl
[25] Weinstein A., “Symplectic categories”, Port. Math., 67 (2010), 261–278, arXiv: 0911.4133 | DOI | MR | Zbl
[26] Witten E., “On quantum gauge theories in two dimensions”, Comm. Math. Phys., 141 (1991), 153–209 | DOI | MR | Zbl
[27] Woodhouse N. M. J., Geometric quantization, Oxford Mathematical Monographs, 2nd ed., The Clarendon Press, Oxford University Press, New York, 1992 | MR
[28] Zuckerman G. J., “Action principles and global geometry”, Mathematical Aspects of String Theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., 1, World Sci. Publishing, Singapore, 1987, 259–284 | DOI | MR