Virtual Crystals and Nakajima Monomials
Symmetry, integrability and geometry: methods and applications, Tome 14 (2018) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An explicit description of the virtualization map for the (modified) Nakajima monomial model for crystals is given. We give an explicit description of the Lusztig data for modified Nakajima monomials in type $A_n$.
Keywords: crystal; Nakajima monomial; virtualization; PBW basis; Kostant partition.
@article{SIGMA_2018_14_a102,
     author = {Ben Salisbury and Travis Scrimshaw},
     title = {Virtual {Crystals} and {Nakajima} {Monomials}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2018},
     volume = {14},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a102/}
}
TY  - JOUR
AU  - Ben Salisbury
AU  - Travis Scrimshaw
TI  - Virtual Crystals and Nakajima Monomials
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2018
VL  - 14
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a102/
LA  - en
ID  - SIGMA_2018_14_a102
ER  - 
%0 Journal Article
%A Ben Salisbury
%A Travis Scrimshaw
%T Virtual Crystals and Nakajima Monomials
%J Symmetry, integrability and geometry: methods and applications
%D 2018
%V 14
%U http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a102/
%G en
%F SIGMA_2018_14_a102
Ben Salisbury; Travis Scrimshaw. Virtual Crystals and Nakajima Monomials. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a102/

[1] Baker T. H., “Zero actions and energy functions for perfect crystals”, Publ. Res. Inst. Math. Sci., 36 (2000), 533–572 | DOI | MR | Zbl

[2] Berenstein A., Fomin S., Zelevinsky A., “Parametrizations of canonical bases and totally positive matrices”, Adv. Math., 122 (1996), 49–149 | DOI | MR | Zbl

[3] Berenstein A., Zelevinsky A., “Tensor product multiplicities, canonical bases and totally positive varieties”, Invent. Math., 143 (2001), 77–128, arXiv: math.RT/9912012 | DOI | MR | Zbl

[4] Bump D., Schilling A., Crystal bases. Representations and combinatorics, World Sci. Publ. Co. Pte. Ltd., Hackensack, NJ, 2017 | DOI | MR | Zbl

[5] Cliff G., “Crystal bases and Young tableaux”, J. Algebra, 202 (1998), 10–35, arXiv: q-alg/9706025 | DOI | MR | Zbl

[6] Danilov V. I., Karzanov A. V., Koshevoy G. A., “$B_2$-crystals: axioms, structure, models”, J. Combin. Theory Ser. A, 116 (2009), 265–289, arXiv: 0708.2198 | DOI | MR | Zbl

[7] Grojnowski I., Lusztig G., “A comparison of bases of quantized enveloping algebras”, Linear Algebraic Groups and their Representations (Los Angeles, CA, 1992), Contemp. Math., 153, Amer. Math. Soc., Providence, RI, 1993, 11–19 | DOI | MR | Zbl

[8] Gunawan E., Scrimshaw T., Realization of Kirillov–Reshetikhin crystals $B^{1,s}$ for $\widehat{\mathfrak{sl}}_n$ using Nakajima monomials, arXiv: 1610.09224 | MR

[9] Hatayama G., Kuniba A., Okado M., Takagi T., Tsuboi Z., “Paths, crystals and fermionic formulae”, MathPhys Odyssey (2001), Prog. Math. Phys., 23, Birkhäuser Boston, Boston, MA, 2002, 205–272, arXiv: math.QA/0102113 | DOI | MR | Zbl

[10] Hatayama G., Kuniba A., Okado M., Takagi T., Yamada Y., “Remarks on fermionic formula”, Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 243–291, arXiv: math.QA/9812022 | DOI | MR | Zbl

[11] Henriques A., Kamnitzer J., “Crystals and coboundary categories”, Duke Math. J., 132 (2006), 191–216, arXiv: math.QA/0406478 | DOI | MR | Zbl

[12] Hernandez D., Nakajima H., “Level 0 monomial crystals”, Nagoya Math. J., 184 (2006), 85–153, arXiv: math.QA/0606174 | DOI | MR | Zbl

[13] Hong J., Kang S.-J., Introduction to quantum groups and crystal bases, Graduate Studies in Mathematics, 42, Amer. Math. Soc., Providence, RI, 2002 | DOI | MR | Zbl

[14] Hong J., Lee H., “Young tableaux and crystal ${\mathcal B}(\infty)$ for finite simple Lie algebras”, J. Algebra, 320 (2008), 3680–3693, arXiv: math.QA/0507448 | DOI | MR | Zbl

[15] Jiang Y., Sheng J., “An insight into the description of the crystal structure for Mirković–Vilonen polytopes”, Trans. Amer. Math. Soc., 369 (2017), 6407–6427, arXiv: 1501.07628 | DOI | MR | Zbl

[16] Kac V. G., Infinite-dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990 | DOI | MR | Zbl

[17] Kamnitzer J., “The crystal structure on the set of Mirković–Vilonen polytopes”, Adv. Math., 215 (2007), 66–93, arXiv: math.QA/0505398 | DOI | MR | Zbl

[18] Kamnitzer J., “Mirković–Vilonen cycles and polytopes”, Ann. of Math., 171 (2010), 245–294, arXiv: math.AG/0501365 | DOI | MR | Zbl

[19] Kamnitzer J., Tingley P., “A definition of the crystal commutor using Kashiwara's involution”, J. Algebraic Combin., 29 (2009), 261–268, arXiv: math.QA/0610952 | DOI | MR | Zbl

[20] Kang S.-J., Kashiwara M., Misra K. C., “Crystal bases of Verma modules for quantum affine Lie algebras”, Compositio Math., 92, 1994, 299–325 | MR | Zbl

[21] Kang S.-J., Kashiwara M., Misra K. C., Miwa T., Nakashima T., Nakayashiki A., “Affine crystals and vertex models”, Infinite Analysis (Kyoto, 1991), v. A, B, Adv. Ser. Math. Phys., 16, World Sci. Publ., River Edge, NJ, 1992, 449–484 | MR

[22] Kang S.-J., Kashiwara M., Misra K. C., Miwa T., Nakashima T., Nakayashiki A., “Perfect crystals of quantum affine Lie algebras”, Duke Math. J., 68 (1992), 499–607 | DOI | MR | Zbl

[23] Kang S.-J., Kim J.-A., Shin D.-U., “Modified Nakajima monomials and the crystal $B(\infty)$”, J. Algebra, 308 (2007), 524–535 | DOI | MR | Zbl

[24] Kang S.-J., Misra K. C., “Crystal bases and tensor product decompositions of $U_q(G_2)$-modules”, J. Algebra, 163 (1994), 675–691 | DOI | MR | Zbl

[25] Kashiwara M., “On crystal bases of the $Q$-analogue of universal enveloping algebras”, Duke Math. J., 63 (1991), 465–516 | DOI | MR | Zbl

[26] Kashiwara M., “The crystal base and Littelmann's refined Demazure character formula”, Duke Math. J., 71 (1993), 839–858 | DOI | MR | Zbl

[27] Kashiwara M., “Crystal bases of modified quantized enveloping algebra”, Duke Math. J., 73 (1994), 383–413 | DOI | MR | Zbl

[28] Kashiwara M., “Similarity of crystal bases”, Lie Algebras and their Representations (Seoul, 1995), Contemp. Math., 194, Amer. Math. Soc., Providence, RI, 1996, 177–186 | DOI | MR | Zbl

[29] Kashiwara M., Bases cristallines des groupes quantiques, Cours Spécialisés, 9, Société Mathématique de France, Paris, 2002 | MR | Zbl

[30] Kashiwara M., “On level-zero representations of quantized affine algebras”, Duke Math. J., 112 (2002), 117–175, arXiv: math.QA/0010293 | DOI | MR

[31] Kashiwara M., “Realizations of crystals”, Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., 325, Amer. Math. Soc., Providence, RI, 2003, 133–139, arXiv: math.QA/0202268 | DOI | MR | Zbl

[32] Kashiwara M., Nakashima T., “Crystal graphs for representations of the $q$-analogue of classical Lie algebras”, J. Algebra, 165 (1994), 295–345 | DOI | MR | Zbl

[33] Kim J.-A., Shin D.-U., “Monomial realization of crystal bases $B(\infty)$ for the quantum finite algebras”, Algebr. Represent. Theory, 11 (2008), 93–105 | DOI | MR | Zbl

[34] Kim J.-A., Shin D.-U., “Generalized Young walls and crystal bases for quantum affine algebra of type $A$”, Proc. Amer. Math. Soc., 138 (2010), 3877–3889 | DOI | MR | Zbl

[35] Kim J.-A., Shin D.-U., “Zigzag strip bundles and crystals”, J. Combin. Theory Ser. A, 120 (2013), 1087–1115 | DOI | MR | Zbl

[36] Kim J.-A., Shin D.-U., “Zigzag strip bundles and highest weight crystals”, J. Algebra, 412 (2014), 15–50 | DOI | MR | Zbl

[37] Kim J.-A., Shin D.-U., “Zigzag strip bundles and the crystal $B(\infty)$ for quantum affine algebras”, Comm. Algebra, 43 (2015), 1983–2004 | DOI | MR | Zbl

[38] Kim J.-A., Shin D.-U., “Zigzag strip bundle realization of $B(\Lambda_0)$ over $U_q\big(C_n^{(1)}\big)$”, Algebr. Represent. Theory, 19 (2016), 1423–1436 | DOI | MR | Zbl

[39] Lee H., “Crystal $B(\lambda)$ as a subset of crystal $B(\infty)$ expressed as tableaux for $A_n$ type”, J. Algebra, 400 (2014), 142–160 | DOI | MR | Zbl

[40] Li B., Zhang H., “Path realization of crystal $B(\infty)$”, Front. Math. China, 6 (2011), 689–706 | DOI | MR | Zbl

[41] Littelmann P., “The path model for representations of symmetrizable Kac–Moody algebras”, Proceedings of the International Congress of Mathematicians (Zürich, 1994), v. 1, 2, Birkhäuser, Basel, 1995, 298–308 | DOI | MR | Zbl

[42] Littelmann P., “Paths and root operators in representation theory”, Ann. of Math., 142 (1995), 499–525 | DOI | MR | Zbl

[43] Lusztig G., “Canonical bases arising from quantized enveloping algebras”, J. Amer. Math. Soc., 3 (1990), 447–498 | DOI | MR | Zbl

[44] Naito S., Sagaki D., “Lakshmibai–Seshadri paths fixed by a diagram automorphism”, J. Algebra, 245 (2001), 395–412 | DOI | MR | Zbl

[45] Naito S., Sagaki D., “Crystal base elements of an extremal weight module fixed by a diagram automorphism”, Algebr. Represent. Theory, 8 (2005), 689–707 | DOI | MR | Zbl

[46] Naito S., Sagaki D., “A modification of the Anderson–Mirković conjecture for Mirković–Vilonen polytopes in types $B$ and $C$”, J. Algebra, 320 (2008), 387–416, arXiv: 0711.0071 | DOI | MR | Zbl

[47] Naito S., Sagaki D., “Crystal base elements of an extremal weight module fixed by a diagram automorphism II: case of affine Lie algebras”, Representation theory of algebraic groups and quantum groups, Progr. Math., 284, Birkhäuser/Springer, New York, 2010, 225–255 | DOI | MR | Zbl

[48] Nakajima H., “$T$-analogue of the $q$-characters of finite dimensional representations of quantum affine algebras”, Physics and Combinatorics (2000, Nagoya), World Sci. Publ., River Edge, NJ, 2001, 196–219, arXiv: math.QA/0009231 | DOI | MR | Zbl

[49] Nakajima H., “$t$-analogs of $q$-characters of Kirillov–Reshetikhin modules of quantum affine algebras”, Represent. Theory, 7 (2003), 259–274, arXiv: math.QA/0204185 | DOI | MR | Zbl

[50] Nakajima H., “$t$-analogs of $q$-characters of quantum affine algebras of type $A_n$, $D_n$”, Combinatorial and Geometric Representation Theory (Seoul, 2001), Contemp. Math., 325, Amer. Math. Soc., Providence, RI, 2003, 141–160, arXiv: math.QA/0204184 | DOI | MR | Zbl

[51] Nakajima H., “Quiver varieties and $t$-analogs of $q$-characters of quantum affine algebras”, Ann. of Math., 160 (2004), 1057–1097, arXiv: math.QA/0105173 | DOI | MR

[52] Nakashima T., “Polyhedral realizations of crystal bases for integrable highest weight modules”, J. Algebra, 219 (1999), 571–597, arXiv: math.QA/9806085 | DOI | MR | Zbl

[53] Nakashima T., Zelevinsky A., “Polyhedral realizations of crystal bases for quantized Kac–Moody algebras”, Adv. Math., 131 (1997), 253–278, arXiv: q-alg/9703045 | DOI | MR | Zbl

[54] Okado M., “Simplicity and similarity of Kirillov–Reshetikhin crystals”, Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory, Contemp. Math., 602, Amer. Math. Soc., Providence, RI, 2013, 183–194, arXiv: 1212.0353 | DOI | MR | Zbl

[55] Okado M., Schilling A., “Existence of Kirillov–Reshetikhin crystals for nonexceptional types”, Represent. Theory, 12 (2008), 186–207, arXiv: 0706.2224 | DOI | MR | Zbl

[56] Okado M., Schilling A., Shimozono M., “A tensor product theorem related to perfect crystals”, J. Algebra, 267 (2003), 212–245, arXiv: math.QA/0111288 | DOI | MR | Zbl

[57] Okado M., Schilling A., Shimozono M., “Virtual crystals and fermionic formulas of type $D^{(2)}_{n+1}$, $A^{(2)}_{2n}$, and $C^{(1)}_n$”, Represent. Theory, 7 (2003), 101–163, arXiv: math.QA/0105017 | DOI | MR | Zbl

[58] Okado M., Schilling A., Shimozono M., “Virtual crystals and Kleber's algorithm”, Comm. Math. Phys., 238 (2003), 187–209, arXiv: math.QA/0209082 | DOI | MR | Zbl

[59] Pan J., Scrimshaw T., “Virtualization map for the Littelmann path model”, Transform. Groups (to appear) , arXiv: 1509.08103 | DOI

[60] Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, \href{http://combinat.sagemath.org}http://combinat.sagemath.org, 2008

[61] Sage Mathematics Software, Version 8.0, , 2017 http://www.sagemath.org

[62] Salisbury B., Schultze A., Tingley P., “Combinatorial descriptions of the crystal structure on certain PBW bases”, Transform. Groups, 23 (2018), 501–525, arXiv: 1606.01978 | DOI | MR | Zbl

[63] Salisbury B., Schultze A., Tingley P., “PBW bases and marginally large tableaux in type D”, J. Comb., 9 (2018), 535–551, arXiv: 1606.02517 | DOI | MR | Zbl

[64] Salisbury B., Scrimshaw T., “A rigged configuration model for $B(\infty)$”, J. Combin. Theory Ser. A, 133 (2015), 29–57, arXiv: 1404.6539 | DOI | MR | Zbl

[65] Salisbury B., Scrimshaw T., “Connecting marginally large tableaux and rigged configurations via crystals”, Algebr. Represent. Theory, 19 (2016), 523–546, arXiv: 1505.07040 | DOI | MR | Zbl

[66] Salisbury B., Scrimshaw T., “Rigged configurations and the $\ast$-involution”, Lett. Math. Phys., 108 (2018), 1985–2007, arXiv: 1601.06137 | DOI | MR | Zbl

[67] Sam S. V., Tingley P., “Combinatorial realizations of crystals via torus actions on quiver varieties”, J. Algebraic Combin., 39 (2014), 271–300, arXiv: 1205.5847 | DOI | MR | Zbl

[68] Savage A., “A geometric construction of crystal graphs using quiver varieties: extension to the non-simply laced case”, Infinite-Dimensional Aspects of Representation Theory and Applications, Contemp. Math., 392, Amer. Math. Soc., Providence, RI, 2005, 133–154, arXiv: math.QA/0406073 | DOI | MR | Zbl

[69] Savage A., “Crystals, quiver varieties, and coboundary categories for Kac–Moody algebras”, Adv. Math., 221 (2009), 22–53, arXiv: 0802.4083 | DOI | MR | Zbl

[70] Schilling A., “Crystal structure on rigged configurations”, Int. Math. Res. Not., 2006, 2006, 97376, 27 pp., arXiv: math.QA/0508107 | DOI | MR | Zbl

[71] Schilling A., Scrimshaw T., “Crystal structure on rigged configurations and the filling map”, Electron. J. Combin., 22 (2015), 1.73, 56 pp., arXiv: 1409.2920 | MR | Zbl

[72] Stembridge J. R., “A local characterization of simply-laced crystals”, Trans. Amer. Math. Soc., 355 (2003), 4807–4823 | DOI | MR | Zbl

[73] Sternberg P., “On the local structure of doubly laced crystals”, J. Combin. Theory Ser. A, 114 (2007), 809–824, arXiv: math.RT/0603547 | DOI | MR | Zbl