@article{SIGMA_2018_14_a10,
author = {Farrokh Atai and Edwin Langmann},
title = {Series {Solutions} of the {Non-Stationary} {Heun} {Equation}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2018},
volume = {14},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a10/}
}
Farrokh Atai; Edwin Langmann. Series Solutions of the Non-Stationary Heun Equation. Symmetry, integrability and geometry: methods and applications, Tome 14 (2018). http://geodesic.mathdoc.fr/item/SIGMA_2018_14_a10/
[1] Bazhanov V. V., Mangazeev V. V., “Eight-vertex model and non-stationary {L}amé equation”, J. Phys. A: Math. Gen., 38 (2005), L145–L153, arXiv: hep-th/0411094 | DOI | MR
[2] Chalykh O., Feigin M., Veselov A., “New integrable generalizations of Calogero–Moser quantum problem”, J. Math. Phys., 39 (1998), 695–703 | DOI | MR
[3] Erdélyi A., “Integral equations for Heun functions”, Quart. J. Math., Oxford Ser., 13 (1942), 107–112 | DOI | MR
[4] Etingof P. I., Frenkel I. B., Kirillov Jr. A.A., “Spherical functions on affine Lie groups”, Duke Math. J., 80 (1995), 59–90, arXiv: hep-th/9407047 | DOI | MR
[5] Etingof P. I., Kirillov Jr. A.A., “Representations of affine Lie algebras, parabolic differential equations, and Lamé functions”, Duke Math. J., 74 (1994), 585–614, arXiv: hep-th/9310083 | DOI | MR
[6] Falceto F., Gawȩdzki K., “Unitarity of the Knizhnik–Zamolodchikov–Bernard connection and the Bethe ansatz for the elliptic Hitchin systems”, Comm. Math. Phys., 183 (1997), 267–290, arXiv: hep-th/9604094 | DOI | MR
[7] Fateev V. A., Litvinov A. V., Neveu A., Onofri E., “A differential equation for a four-point correlation function in Liouville field theory and elliptic four-point conformal blocks”, J. Phys. A: Math. Theor., 42 (2009), 304011, 29 pp., arXiv: 0902.1331 | DOI | MR
[8] Felder G., Varchenko A., “Integral representation of solutions of the elliptic Knizhnik–Zamolodchikov–Bernard equations”, Int. Math. Res. Not., 1995 (1995), 221–233, arXiv: hep-th/9502165 | DOI | MR
[9] Felder G., Varchenko A., “Special functions, conformal blocks, Bethe ansatz and ${\rm SL}(3,{\mathbb Z})$”, Phil. Trans. R. Soc. Lond. A, 359 (2001), 1365–1373, arXiv: math.QA/0101136 | DOI | MR
[10] Hallnäs M., Langmann E., “A unified construction of generalized classical polynomials associated with operators of Calogero–Sutherland type”, Constr. Approx., 31 (2010), 309–342, arXiv: math-ph/0703090 | DOI | MR
[11] Hallnäs M., Ruijsenaars S., “A recursive construction of joint eigenfunctions for the hyperbolic nonrelativistic Calogero–Moser Hamiltonians”, Int. Math. Res. Not., 2015 (2015), 10278–10313, arXiv: 1305.4759 | DOI | MR
[12] Inozemtsev V. I., “Lax representation with spectral parameter on a torus for integrable particle systems”, Lett. Math. Phys., 17 (1989), 11–17 | DOI | MR
[13] Kazakov A. Y., Slavyanov S. Yu., “Integral relations for Heun-class special functions”, Theoret. and Math. Phys., 107 (1996), 733–739 | DOI | MR
[14] Kolb S., “Radial part calculations for $\widehat{\mathfrak{sl}}_2$ and the Heun-KZB heat equation”, Int. Math. Res. Not., 2015 (2015), 12941–12990, arXiv: 1310.0782 | DOI | MR
[15] Komori Y., Noumi M., Shiraishi J., “Kernel functions for difference operators of Ruijsenaars type and their applications”, SIGMA, 5 (2009), 054, 40 pp., arXiv: 0812.0279 | DOI | MR
[16] Komori Y., Takemura K., “The perturbation of the quantum Calogero–Moser–Sutherland system and related results”, Comm. Math. Phys., 227 (2002), 93–118, arXiv: math.QA/0009244 | DOI | MR
[17] Koroteev P., Sciarappa A., “On elliptic algebras and large-$n$ supersymmetric gauge theories”, J. Math. Phys., 57 (2016), 112302, 32 pp., arXiv: 1601.08238 | DOI | MR
[18] Lambe C. G., Ward D. R., “Some differential equations and associated integral equations”, Quart. J. Math., os-5 (1934), 81–97 | DOI
[19] Langmann E., “Anyons and the elliptic Calogero-Sutherland model”, Lett. Math. Phys., 54 (2000), 279–289, arXiv: math-ph/0007036 | DOI | MR
[20] Langmann E., “Algorithms to solve the (quantum) Sutherland model”, J. Math. Phys., 42 (2001), 4148–4157, arXiv: math-ph/0104039 | DOI | MR
[21] Langmann E., “Remarkable identities related to the (quantum) elliptic Calogero–Sutherland model”, J. Math. Phys., 47 (2006), 022101, 18 pp., arXiv: math-ph/0406061 | DOI | MR
[22] Langmann E., “Singular eigenfunctions of Calogero–Sutherland type systems and how to transform them into regular ones”, SIGMA, 3 (2007), 031, 18 pp., arXiv: math-ph/0702089 | DOI | MR
[23] Langmann E., “Source identity and kernel functions for elliptic Calogero–Sutherland type systems”, Lett. Math. Phys., 94 (2010), 63–75, arXiv: 1003.0857 | DOI | MR
[24] Langmann E., “Explicit solution of the (quantum) elliptic Calogero–Sutherland model”, Ann. Henri Poincaré, 15 (2014), 755–791, arXiv: math-ph/0407050 | DOI | MR
[25] Langmann E., Takemura K., “Source identity and kernel functions for Inozemtsev-type systems”, J. Math. Phys., 53 (2012), 082105, 19 pp., arXiv: 1202.3544 | DOI | MR
[26] Maier R. S., “The 192 solutions of the Heun equation”, Math. Comp., 76 (2007), 811–843, arXiv: math.CA/0408317 | DOI | MR
[27] Nagoya H., “Hypergeometric solutions to Schrödinger equations for the quantum Painlevé equations”, J. Math. Phys., 52 (2011), 083509, 16 pp., arXiv: 1109.1645 | DOI | MR
[28] Nawata S., “Givental $J$-functions, quantum integrable systems, AGT relation with surface operator”, Adv. Theor. Math. Phys., 19 (2015), 1277–1338, arXiv: 1408.4132 | DOI | MR
[29] Nekrasov N. A., Shatashvili S. L., “Quantization of integrable systems and four dimensional gauge theories”, XVIth International Congress on Mathematical Physics, World Sci. Publ., Hackensack, NJ, 2010, 265–289, arXiv: 0908.4052 | DOI | MR
[30] NIST digital library of mathematical functions, Release date 2010-05-07, http://dlmf.nist.gov/
[31] Novikov D. P., “Integral transformation of solutions for a Fuchsian-class equation corresponding to the {O}kamoto transformation of the Painlevé VI equation”, Theoret. and Math. Phys., 146 (2006), 295–303 | DOI | MR
[32] Ronveaux A., Arscott F. (eds.), Heun's differential equations, Oxford Science Publications, Oxford University Press, Oxford, 1995
[33] Rosengren H., Special polynomials related to the supersymmetric eight-vertex model. III. Painlevé VI equation, arXiv: 1405.5318 | MR
[34] Rosengren H., “Special polynomials related to the supersymmetric eight-vertex model: a summary”, Comm. Math. Phys., 340 (2015), 1143–1170, arXiv: 1503.02833 | DOI | MR
[35] Ruijsenaars S. N. M., “Hilbert–Schmidt operators vs. integrable systems of elliptic Calogero–Moser type. III. The Heun case”, SIGMA, 5 (2009), 049, 21 pp., arXiv: 0904.3250 | DOI | MR
[36] Sergeev A. N., “Calogero operator and Lie superalgebras”, Theoret. and Math. Phys., 131 (2002), 747–764 | DOI | MR
[37] Slavyanov S. Yu., Lay W., Special functions. A unified theory based on singularities, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000 | MR
[38] Smirnov A. O., “Elliptic solitons and Heun's equation”, The Kowalevski Property (Leeds, 2000), CRM Proc. Lecture Notes, 32, Amer. Math. Soc., Providence, RI, 2002, 287–305, arXiv: math.CA/0109149 | DOI | MR
[39] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. II. Perturbation and algebraic solution”, Electron. J. Differential Equations, 2004 (2004), 15, 30 pp., arXiv: math.CA/0112179 | MR
[40] Takemura K., “The Heun equation and the Calogero–Moser–Sutherland system. IV. The Hermite–Krichever ansatz”, Comm. Math. Phys., 258 (2005), 367–403, arXiv: math.CA/0406141 | DOI | MR
[41] Whittaker E. T., Watson G. N., A course of modern analysis, Cambridge Mathematical Library, 4th ed., Cambridge University Press, Cambridge, 1996 | DOI | MR