Contractions of Degenerate Quadratic Algebras, Abstract and Geometric
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Quadratic algebras are generalizations of Lie algebras which include the symmetry algebras of 2nd order superintegrable systems in 2 dimensions as special cases. The superintegrable systems are exactly solvable physical systems in classical and quantum mechanics. Distinct superintegrable systems and their quadratic algebras can be related by geometric contractions, induced by Bôcher contractions of the conformal Lie algebra $\mathfrak{so}(4,\mathbb {C})$ to itself. In 2 dimensions there are two kinds of quadratic algebras, nondegenerate and degenerate. In the geometric case these correspond to 3 parameter and 1 parameter potentials, respectively. In a previous paper we classified all abstract parameter-free nondegenerate quadratic algebras in terms of canonical forms and determined which of these can be realized as quadratic algebras of 2D nondegenerate superintegrable systems on constant curvature spaces and Darboux spaces, and studied the relationship between Bôcher contractions of these systems and abstract contractions of the free quadratic algebras. Here we carry out an analogous study of abstract parameter-free degenerate quadratic algebras and their possible geometric realizations. We show that the only free degenerate quadratic algebras that can be constructed in phase space are those that arise from superintegrability. We classify all Bôcher contractions relating degenerate superintegrable systems and, separately, all abstract contractions relating free degenerate quadratic algebras. We point out the few exceptions where abstract contractions cannot be realized by the geometric Bôcher contractions.
Keywords: Bôcher contractions; quadratic algebras; superintegrable systems; conformal superintegrability; Poisson structures.
@article{SIGMA_2017_13_a98,
     author = {Mauricio A. Escobar Ruiz and Willard Miller Jr. and Eyal Subag},
     title = {Contractions of {Degenerate} {Quadratic} {Algebras,} {Abstract} and {Geometric}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a98/}
}
TY  - JOUR
AU  - Mauricio A. Escobar Ruiz
AU  - Willard Miller Jr.
AU  - Eyal Subag
TI  - Contractions of Degenerate Quadratic Algebras, Abstract and Geometric
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a98/
LA  - en
ID  - SIGMA_2017_13_a98
ER  - 
%0 Journal Article
%A Mauricio A. Escobar Ruiz
%A Willard Miller Jr.
%A Eyal Subag
%T Contractions of Degenerate Quadratic Algebras, Abstract and Geometric
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a98/
%G en
%F SIGMA_2017_13_a98
Mauricio A. Escobar Ruiz; Willard Miller Jr.; Eyal Subag. Contractions of Degenerate Quadratic Algebras, Abstract and Geometric. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a98/

[1] Bôcher M., Über die Riehenentwickelungen der Potentialtheory, B.G. Teubner, Leipzig, 1894

[2] Capel J. J., Kress J. M., Post S., “Invariant classification and limits of maximally superintegrable systems in 3D”, SIGMA, 11 (2015), 038, 17 pp., arXiv: 1501.06601 | DOI | MR | Zbl

[3] Daskaloyannis C., Tanoudis Y., “Quantum superintegrable systems with quadratic integrals on a two dimensional manifold”, J. Math. Phys., 48 (2007), 072108, 22 pp., arXiv: math-ph/0607058 | DOI | MR | Zbl

[4] Dufour J. P., Zung N. T. Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005 | DOI | MR | Zbl

[5] Escobar Ruiz M. A., Kalnins E. G., Miller W. (Jr.), Subag E., “Bôcher and abstract contractions of 2nd order quadratic algebras”, SIGMA, 13 (2017), 013, 38 pp., arXiv: 1611.02560 | DOI | MR | Zbl

[6] Grabowski J., Marmo G., Perelomov A. M., “Poisson structures: towards a classification”, Modern Phys. Lett. A, 8 (1993), 1719–1733 | DOI | MR | Zbl

[7] Heinonen R., Kalnins E. G., Miller W. (Jr.), Subag E., “Structure relations and Darboux contractions for 2D 2nd order superintegrable systems”, SIGMA, 11 (2015), 043, 33 pp., arXiv: 1502.00128 | DOI | MR | Zbl

[8] Izmest'ev A.A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and separation of variables”, J. Phys. A: Math. Gen., 29 (1996), 5949–5962 | DOI | MR | Zbl

[9] Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and the separation of variables: interbase expansions”, J. Phys. A, 34 (2001), 521–554 | DOI | MR | Zbl

[10] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 053509, 28 pp. | DOI | MR | Zbl

[11] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp. | DOI | MR | Zbl

[12] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory”, J. Math. Phys., 47 (2006), 043514, 26 pp. | DOI | MR | Zbl

[13] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI | MR | Zbl

[14] Kalnins E. G., Kress J. M., Miller W. (Jr.), Winternitz P., “Superintegrable systems in Darboux spaces”, J. Math. Phys., 44 (2003), 5811–5848, arXiv: math-ph/0307039 | DOI | MR | Zbl

[15] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller W. (Jr.), “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720, arXiv: math-ph/0102006 | DOI | MR | Zbl

[16] Kalnins E. G., Miller W. (Jr.), “Quadratic algebra contractions and second-order superintegrable systems”, Anal. Appl. (Singap.), 12 (2014), 583–612, arXiv: 1401.0830 | DOI | MR | Zbl

[17] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI | MR | Zbl

[18] Kalnins E. G., Miller W. (Jr.), Subag E., “Bôcher contractions of conformally superintegrable Laplace equations”, SIGMA, 12 (2016), 038, 31 pp., arXiv: 1512.09315 | DOI | MR | Zbl

[19] Koenigs G. X. P., “Sur les géodésiques a integrales quadratiques”, Le{ c}ons sur la théorie générale des surfaces, v. 4, ed. J. G. Darboux, Chelsea Publishing, 1972, 368–404 | MR

[20] Laurent-Gengoux C., Pichereau A., Vanhaecke P., Poisson structures, Grundlehren der Mathematischen Wissenschaften, 347, Springer, Heidelberg, 2013 | DOI | MR

[21] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendent potentials”, J. Math. Phys., 50 (2009), 095202, 18 pp., arXiv: 0811.1568 | DOI | MR | Zbl

[22] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl

[23] Tempesta P., Winternitz P., Harnad J., Miller W. (Jr.), Pogosyan G., Rodriguez M. (eds.), Superintegrability in classical and quantum systems, CRM Proceedings and Lecture Notes, 37, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl