@article{SIGMA_2017_13_a98,
author = {Mauricio A. Escobar Ruiz and Willard Miller Jr. and Eyal Subag},
title = {Contractions of {Degenerate} {Quadratic} {Algebras,} {Abstract} and {Geometric}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a98/}
}
TY - JOUR AU - Mauricio A. Escobar Ruiz AU - Willard Miller Jr. AU - Eyal Subag TI - Contractions of Degenerate Quadratic Algebras, Abstract and Geometric JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a98/ LA - en ID - SIGMA_2017_13_a98 ER -
%0 Journal Article %A Mauricio A. Escobar Ruiz %A Willard Miller Jr. %A Eyal Subag %T Contractions of Degenerate Quadratic Algebras, Abstract and Geometric %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a98/ %G en %F SIGMA_2017_13_a98
Mauricio A. Escobar Ruiz; Willard Miller Jr.; Eyal Subag. Contractions of Degenerate Quadratic Algebras, Abstract and Geometric. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a98/
[1] Bôcher M., Über die Riehenentwickelungen der Potentialtheory, B.G. Teubner, Leipzig, 1894
[2] Capel J. J., Kress J. M., Post S., “Invariant classification and limits of maximally superintegrable systems in 3D”, SIGMA, 11 (2015), 038, 17 pp., arXiv: 1501.06601 | DOI | MR | Zbl
[3] Daskaloyannis C., Tanoudis Y., “Quantum superintegrable systems with quadratic integrals on a two dimensional manifold”, J. Math. Phys., 48 (2007), 072108, 22 pp., arXiv: math-ph/0607058 | DOI | MR | Zbl
[4] Dufour J. P., Zung N. T. Poisson structures and their normal forms, Progress in Mathematics, 242, Birkhäuser Verlag, Basel, 2005 | DOI | MR | Zbl
[5] Escobar Ruiz M. A., Kalnins E. G., Miller W. (Jr.), Subag E., “Bôcher and abstract contractions of 2nd order quadratic algebras”, SIGMA, 13 (2017), 013, 38 pp., arXiv: 1611.02560 | DOI | MR | Zbl
[6] Grabowski J., Marmo G., Perelomov A. M., “Poisson structures: towards a classification”, Modern Phys. Lett. A, 8 (1993), 1719–1733 | DOI | MR | Zbl
[7] Heinonen R., Kalnins E. G., Miller W. (Jr.), Subag E., “Structure relations and Darboux contractions for 2D 2nd order superintegrable systems”, SIGMA, 11 (2015), 043, 33 pp., arXiv: 1502.00128 | DOI | MR | Zbl
[8] Izmest'ev A.A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and separation of variables”, J. Phys. A: Math. Gen., 29 (1996), 5949–5962 | DOI | MR | Zbl
[9] Izmest'ev A. A., Pogosyan G. S., Sissakian A. N., Winternitz P., “Contractions of Lie algebras and the separation of variables: interbase expansions”, J. Phys. A, 34 (2001), 521–554 | DOI | MR | Zbl
[10] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory”, J. Math. Phys., 46 (2005), 053509, 28 pp. | DOI | MR | Zbl
[11] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform”, J. Math. Phys., 46 (2005), 053510, 15 pp. | DOI | MR | Zbl
[12] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory”, J. Math. Phys., 47 (2006), 043514, 26 pp. | DOI | MR | Zbl
[13] Kalnins E. G., Kress J. M., Miller W. (Jr.), “Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems”, J. Math. Phys., 47 (2006), 093501, 25 pp. | DOI | MR | Zbl
[14] Kalnins E. G., Kress J. M., Miller W. (Jr.), Winternitz P., “Superintegrable systems in Darboux spaces”, J. Math. Phys., 44 (2003), 5811–5848, arXiv: math-ph/0307039 | DOI | MR | Zbl
[15] Kalnins E. G., Kress J. M., Pogosyan G. S., Miller W. (Jr.), “Completeness of superintegrability in two-dimensional constant-curvature spaces”, J. Phys. A: Math. Gen., 34 (2001), 4705–4720, arXiv: math-ph/0102006 | DOI | MR | Zbl
[16] Kalnins E. G., Miller W. (Jr.), “Quadratic algebra contractions and second-order superintegrable systems”, Anal. Appl. (Singap.), 12 (2014), 583–612, arXiv: 1401.0830 | DOI | MR | Zbl
[17] Kalnins E. G., Miller W. (Jr.), Post S., “Contractions of 2D 2nd order quantum superintegrable systems and the Askey scheme for hypergeometric orthogonal polynomials”, SIGMA, 9 (2013), 057, 28 pp., arXiv: 1212.4766 | DOI | MR | Zbl
[18] Kalnins E. G., Miller W. (Jr.), Subag E., “Bôcher contractions of conformally superintegrable Laplace equations”, SIGMA, 12 (2016), 038, 31 pp., arXiv: 1512.09315 | DOI | MR | Zbl
[19] Koenigs G. X. P., “Sur les géodésiques a integrales quadratiques”, Le{ c}ons sur la théorie générale des surfaces, v. 4, ed. J. G. Darboux, Chelsea Publishing, 1972, 368–404 | MR
[20] Laurent-Gengoux C., Pichereau A., Vanhaecke P., Poisson structures, Grundlehren der Mathematischen Wissenschaften, 347, Springer, Heidelberg, 2013 | DOI | MR
[21] Marquette I., “Superintegrability with third order integrals of motion, cubic algebras, and supersymmetric quantum mechanics. II. Painlevé transcendent potentials”, J. Math. Phys., 50 (2009), 095202, 18 pp., arXiv: 0811.1568 | DOI | MR | Zbl
[22] Miller W. (Jr.), Post S., Winternitz P., “Classical and quantum superintegrability with applications”, J. Phys. A: Math. Theor., 46 (2013), 423001, 97 pp., arXiv: 1309.2694 | DOI | MR | Zbl
[23] Tempesta P., Winternitz P., Harnad J., Miller W. (Jr.), Pogosyan G., Rodriguez M. (eds.), Superintegrability in classical and quantum systems, CRM Proceedings and Lecture Notes, 37, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl