On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the following paper we investigate the question: when is a transitive topological groupoid continuously isomorphic to a Lie groupoid? We present many results on the matter which may be considered generalizations of the Hilbert's fifth problem to this context. Most notably we present a “solution” to the problem for proper transitive groupoids and transitive groupoids with compact source fibers.
Keywords: Lie groupoids; topological groupoids.
@article{SIGMA_2017_13_a97,
     author = {Pawe{\l} Ra\'zny},
     title = {On the {Generalization} of {Hilbert's} {Fifth} {Problem} to {Transitive} {Groupoids}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a97/}
}
TY  - JOUR
AU  - Paweł Raźny
TI  - On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a97/
LA  - en
ID  - SIGMA_2017_13_a97
ER  - 
%0 Journal Article
%A Paweł Raźny
%T On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a97/
%G en
%F SIGMA_2017_13_a97
Paweł Raźny. On the Generalization of Hilbert's Fifth Problem to Transitive Groupoids. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a97/

[1] Engelking R., General topology, Sigma Series in Pure Mathematics, 6, 2nd ed., Heldermann Verlag, Berlin, 1989 | MR | Zbl

[2] Gleason A. M., “Groups without small subgroups”, Ann. of Math., 56 (1952), 193–212 | DOI | MR | Zbl

[3] Lee J. M., Introduction to topological manifolds, Graduate Texts in Mathematics, 202, 2nd ed., Springer, New York, 2011 | DOI | MR | Zbl

[4] Mackenzie K. C. H., Lie groupoids and Lie algebroids in differential geometry, London Mathematical Society Lecture Note Series, 124, Cambridge University Press, Cambridge, 1987 | DOI | MR | Zbl

[5] Mackenzie K. C. H., General theory of Lie groupoids and Lie algebroids, London Mathematical Society Lecture Note Series, 213, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[6] Moerdijk I., Mrčun J., Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Mathematics, 91, Cambridge University Press, Cambridge, 2003 | DOI | MR | Zbl

[7] Montgomery D., Zippin L., “Small subgroups of finite-dimensional groups”, Ann. of Math., 56 (1952), 213–241 | DOI | MR | Zbl

[8] Müller C., Wockel C., “Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group”, Adv. Geom., 9 (2009), 605–626, arXiv: math.DG/0604142 | DOI | MR | Zbl

[9] Palais R. S., “On the existence of slices for actions of non-compact Lie groups”, Ann. of Math., 73 (1961), 295–323 | DOI | MR | Zbl

[10] Siwiec F., “Sequence-covering and countably bi-quotient mappings”, General Topology and Appl., 1 (1971), 143–154 | DOI | MR | Zbl

[11] Tao T., Hilbert's fifth problem and related topics, Graduate Studies in Mathematics, 153, Amer. Math. Soc., Providence, RI, 2014 | DOI | MR | Zbl

[12] Torres D. M., Proper Lie groupoids are real analytic, arXiv: 1612.09012