An Application of the Moving Frame Method to Integral Geometry in the Heisenberg Group
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We show the fundamental theorems of curves and surfaces in the 3-dimensional Heisenberg group and find a complete set of invariants for curves and surfaces respectively. The proofs are based on Cartan's method of moving frames and Lie group theory. As an application of the main theorems, a Crofton-type formula is proved in terms of p-area which naturally arises from the variation of volume. The application makes a connection between CR geometry and integral geometry.
Keywords: CR manifolds; Heisenberg groups; moving frames.
@article{SIGMA_2017_13_a96,
     author = {Hung-Lin Chiu and Yen-Chang Huang and Sin-Hua Lai},
     title = {An {Application} of the {Moving} {Frame} {Method} to {Integral} {Geometry} in the {Heisenberg} {Group}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a96/}
}
TY  - JOUR
AU  - Hung-Lin Chiu
AU  - Yen-Chang Huang
AU  - Sin-Hua Lai
TI  - An Application of the Moving Frame Method to Integral Geometry in the Heisenberg Group
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a96/
LA  - en
ID  - SIGMA_2017_13_a96
ER  - 
%0 Journal Article
%A Hung-Lin Chiu
%A Yen-Chang Huang
%A Sin-Hua Lai
%T An Application of the Moving Frame Method to Integral Geometry in the Heisenberg Group
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a96/
%G en
%F SIGMA_2017_13_a96
Hung-Lin Chiu; Yen-Chang Huang; Sin-Hua Lai. An Application of the Moving Frame Method to Integral Geometry in the Heisenberg Group. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a96/

[1] Calin O., Chang D.-C., Sub-Riemannian geometry. General theory and examples, Encyclopedia of Mathematics and its Applications, 126, Cambridge University Press, Cambridge, 2009 | DOI | MR | Zbl

[2] Calin O., Chang D.-C., Greiner P., Geometric analysis on the Heisenberg group and its generalizations, AMS/IP Studies in Advanced Mathematics, 40, Amer. Math. Soc., Providence, RI; International Press, Somerville, MA, 2007 | DOI | MR | Zbl

[3] Cheng J.-H., Hwang J.-F., Malchiodi A., Yang P., “Minimal surfaces in pseudohermitian geometry”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4, 2005, 129–177, arXiv: math.DG/0401136 | MR | Zbl

[4] Cheng J.-H., Hwang J.-F., Malchiodi A., Yang P., “A Codazzi-like equation and the singular set for $C^1$ smooth surfaces in the Heisenberg group”, J. Reine Angew. Math., 671 (2012), 131–198, arXiv: 1006.4455 | DOI | MR | Zbl

[5] Chern S. S., Lectures on integral geometry, Academia Sinica, National Taiwan University and National Tsinghua University, 1965 | Zbl

[6] Chern S. S., Chen W. H., Lam K. S., Lectures on differential geometry, Series on University Mathematics, 1, World Sci. Publ. Co., Inc., River Edge, NJ, 1999 | DOI | MR | Zbl

[7] Chevalley C., Theory of Lie groups. I, Princeton Mathematical Series, 8, Princeton University Press, Princeton, NJ, 1999 | MR | Zbl

[8] Chiu H.-L., Feng X., Huang Y.-C., “The fundamental theorem of curves and classifications in the Heisenberg groups”, Differential Geom. Appl., 56 (2018), 161–172, arXiv: 1511.05237 | DOI

[9] Chiu H.-L., Lai S.-H., “The fundamental theorem for hypersurfaces in Heisenberg groups”, Calc. Var. Partial Differential Equations, 54 (2015), 1091–1118, arXiv: 1301.6463 | DOI | MR | Zbl

[10] Fuchs D., Tabachnikov S., “Invariants of Legendrian and transverse knots in the standard contact space”, Topology, 36 (1997), 1025–1053 | DOI | MR | Zbl

[11] Geiges H., An introduction to contact topology, Cambridge Studies in Advanced Mathematics, 109, Cambridge University Press, Cambridge, 2008 | DOI | MR | Zbl

[12] Griffiths P., “On Cartan's method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry”, Duke Math. J., 41 (1974), 775–814 http://projecteuclid.org/euclid.dmj/1077310738 | DOI | MR | Zbl

[13] Huang Y.-C., “Applications of integral geometry to geometric properties of sets in the 3D-Heisenberg group”, Anal. Geom. Metr. Spaces, 4 (2016), 425–435 | DOI | MR | Zbl

[14] Ivey T. A., Landsberg J. M., Cartan for beginners: differential geometry via moving frames and exterior differential systems, Graduate Studies in Mathematics, 61, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR | Zbl

[15] Lee J. M., “The Fefferman metric and pseudo-Hermitian invariants”, Trans. Amer. Math. Soc., 296 (1986), 411–429 | DOI | MR | Zbl

[16] Lee J. M., “Pseudo-Einstein structures on CR manifolds”, Amer. J. Math., 110 (1988), 157–178 | DOI | MR | Zbl

[17] Maalaoui A., Martino V., “The topology of a subspace of the Legendrian curves on a closed contact 3-manifold”, Adv. Nonlinear Stud., 14 (2014), 393–426, arXiv: 1303.5017 | DOI | MR | Zbl

[18] Montefalcone F., “Some relations among volume, intrinsic perimeter and one-dimensional restrictions of BV functions in Carnot groups”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 4 (2005), 79–128 | MR | Zbl

[19] Pansu P., “Une inégalité isopérimétrique sur le groupe de Heisenberg”, C. R. Acad. Sci. Paris Sér. I Math., 295 (1982), 127–130 | MR | Zbl

[20] Prandi D., Rizzi L., Seri M., A sub-Riemannian Santaló formula with applications to isoperimetric inequalities and first Dirichlet eigenvalue of hypoelliptic operators, arXiv: 1509.05415

[21] Ren D. L., Topics in integral geometry, Series in Pure Mathematics, 19, World Sci. Publ. Co., Inc., River Edge, NJ, 1994 | MR | Zbl

[22] Santaló L. A., Integral geometry and geometric probability, Cambridge Mathematical Library, 2nd ed., Cambridge University Press, Cambridge, 2004 | DOI | MR | Zbl

[23] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl

[24] Webster S. M., “Pseudo-Hermitian structures on a real hypersurface”, J. Differential Geom., 13 (1978), 25–41 | DOI | MR | Zbl