Four-Dimensional Painlevé-Type Equations Associated with Ramified Linear Equations III: Garnier Systems and Fuji–Suzuki Systems
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This is the last part of a series of three papers entitled “Four-dimensional Painlevé-type equations associated with ramified linear equations”. In this series of papers we aim to construct the complete degeneration scheme of four-dimensional Painlevé-type equations. In the present paper, we consider the degeneration of the Garnier system in two variables and the Fuji–Suzuki system.
Keywords: isomonodromic deformation; Painlevé equations; degeneration; integrable systems.
@article{SIGMA_2017_13_a95,
     author = {Hiroshi Kawakami},
     title = {Four-Dimensional {Painlev\'e-Type} {Equations} {Associated} with {Ramified} {Linear} {Equations} {III:} {Garnier} {Systems} and {Fuji{\textendash}Suzuki} {Systems}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a95/}
}
TY  - JOUR
AU  - Hiroshi Kawakami
TI  - Four-Dimensional Painlevé-Type Equations Associated with Ramified Linear Equations III: Garnier Systems and Fuji–Suzuki Systems
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a95/
LA  - en
ID  - SIGMA_2017_13_a95
ER  - 
%0 Journal Article
%A Hiroshi Kawakami
%T Four-Dimensional Painlevé-Type Equations Associated with Ramified Linear Equations III: Garnier Systems and Fuji–Suzuki Systems
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a95/
%G en
%F SIGMA_2017_13_a95
Hiroshi Kawakami. Four-Dimensional Painlevé-Type Equations Associated with Ramified Linear Equations III: Garnier Systems and Fuji–Suzuki Systems. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a95/

[1] Babbitt D. G., Varadarajan V. S., “Formal reduction theory of meromorphic differential equations: a group theoretic view”, Pacific J. Math., 109 (1983), 1–80 | DOI | MR | Zbl

[2] Boalch P., “Simply-laced isomonodromy systems”, Publ. Math. Inst. Hautes Études Sci., 116 (2012), 1–68, arXiv: 1107.0874 | DOI | MR | Zbl

[3] Fuji K., Suzuki T., “Drinfeld–{S}okolov hierarchies of type $A$ and fourth order Painlevé systems”, Funkcial. Ekvac., 53 (2010), 143–167, arXiv: 0904.3434 | DOI | MR | Zbl

[4] Gambier B., “Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est a points critiques fixes”, Acta Math., 33 (1910), 1–55 | DOI | MR

[5] Garnier R., “Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Ann. Sci. École Norm. Sup. (3), 29 (1912), 1–126 | DOI | MR | Zbl

[6] Harnad J., “Dual isomonodromic deformations and moment maps to loop algebras”, Comm. Math. Phys., 166 (1994), 337–365, arXiv: hep-th/9301076 | DOI | MR | Zbl

[7] Hiroe K., Oshima T., “A classification of roots of symmetric Kac–Moody root systems and its application”, Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., 40, Springer, Heidelberg, 2013, 195–241 | DOI | MR | Zbl

[8] Hukuhara M., “Sur les points singuliers des équations différentielles linéaires, II”, J. Fac. Sci. Hokkaido Univ., 5 (1937), 123–166 | MR

[9] Jimbo M., Miwa T., Ueno K., “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and $\tau $-function”, Phys. D, 2 (1981), 306–352 | DOI | MR | Zbl

[10] Kapaev A. A., “Lax pairs for Painlevé equations”, Isomonodromic Deformations and Applications in Physics (Montréal, QC, 2000), CRM Proc. Lecture Notes, 31, Amer. Math. Soc., Providence, RI, 2002, 37–48 | DOI | MR | Zbl

[11] Kapaev A. A., Hubert E., “A note on the Lax pairs for Painlevé equations”, J. Phys. A: Math. Gen., 32 (1999), 8145–8156 | DOI | MR | Zbl

[12] Kawakami H., “Matrix Painlevé systems”, J. Math. Phys., 56 (2015), 033503, 27 pp. | DOI | MR | Zbl

[13] Kawakami H., Four-dimensional Painlevé-type equations associated with ramified linear equations I: Matrix Painlevé systems, arXiv: 1608.03927 | MR

[14] Kawakami H., Four-dimensional Painlevé-type equations associated with ramified linear equations II: Sasano systems, arXiv: 1609.05263 | MR

[15] Kawakami H., Nakamura A., Sakai H., Degeneration scheme of 4-dimensional Painlevé-type equations, arXiv: 1209.3836

[16] Kawamuko H., “On the {G}arnier system of half-integer type in two variables”, Funkcial. Ekvac., 52 (2009), 181–201 | DOI | MR | Zbl

[17] Kimura H., “The degeneration of the two-dimensional Garnier system and the polynomial Hamiltonian structure”, Ann. Mat. Pura Appl., 155 (1989), 25–74 | DOI | MR | Zbl

[18] Levelt A. H. M., “Jordan decomposition for a class of singular differential operators”, Ark. Mat., 13 (1975), 1–27 | DOI | MR | Zbl

[19] Nakamura A., Autonomous limit of 4-dimensional Painlevé-type equations and degeneration of curves of genus two, arXiv: 1505.00885

[20] Ohyama Y., Kawamuko H., Sakai H., Okamoto K., “Studies on the Painlevé equations. V. Third Painlevé equations of special type $P_{\rm III}(D_7)$ and $P_{\rm III}(D_8)$”, J. Math. Sci. Univ. Tokyo, 13 (2006), 145–204 | MR | Zbl

[21] Ohyama Y., Okumura S., “A coalescent diagram of the Painlevé equations from the viewpoint of isomonodromic deformations”, J. Phys. A: Math. Gen., 39 (2006), 12129–12151 | DOI | MR | Zbl

[22] Okamoto K., “Studies on the Painlevé equations. III. Second and fourth Painlevé equations, $P_{{\rm II}}$ and $P_{{\rm IV}}$”, Math. Ann., 275 (1986), 221–255 | DOI | MR | Zbl

[23] Okamoto K., “Studies on the {P}ainlevé equations. I. Sixth Painlevé equation $P_{{\rm VI}}$”, Ann. Mat. Pura Appl., 146 (1987), 337–381 | DOI | MR | Zbl

[24] Okamoto K., “Studies on the Painlevé equations. II. Fifth Painlevé equation $P_{\rm V}$”, Japan. J. Math. (N.S.), 13 (1987), 47–76 | DOI | MR | Zbl

[25] Okamoto K., “Studies on the Painlevé equations. IV. Third Painlevé equation $P_{{\rm III}}$”, Funkcial. Ekvac., 30 (1987), 305–332 | MR | Zbl

[26] Painlevé P., “Sur les équations différentielles du second ordre à points critiques fixes”, C. R. Acad. Sci. Paris, 127 (1898), 945–948 | Zbl

[27] Sakai H., “Rational surfaces associated with affine root systems and geometry of the Painlevé equations”, Comm. Math. Phys., 220 (2001), 165–229 | DOI | MR | Zbl

[28] Sakai H., Isomonodromic deformation and 4-dimensional Painlevé type equations, Preprint, University of Tokyo, Mathematical Sciences, 2010 | Zbl

[29] Sasano Y., “Coupled Painlevé VI systems in dimension four with affine Weyl group symmetry of type $D^{(1)}_6$. II”, Algebraic Analysis and the Exact WKB Analysis for Systems of Differential Equations, RIMS Kôkyûroku Bessatsu, B5, Res. Inst. Math. Sci. (RIMS), Kyoto, 2008, 137–152, arXiv: 0704.2367 | MR

[30] Suzuki T., “A particular solution of a Painlevé system in terms of the hypergeometric function $_{n+1}F_n$”, SIGMA, 6 (2010), 078, 11 pp., arXiv: 1004.0059 | DOI | MR | Zbl

[31] Tsuda T., “UC hierarchy and monodromy preserving deformation”, J. Reine Angew. Math., 690 (2014), 1–34, arXiv: 1007.3450 | DOI | MR | Zbl

[32] Turrittin H. L., “Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point”, Acta Math., 93 (1955), 27–66 | DOI | MR | Zbl

[33] Wasow W., Asymptotic expansions for ordinary differential equations, Pure and Applied Mathematics, 14, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1965 | MR | Zbl

[34] Yamakawa D., “Middle convolution and Harnad duality”, Math. Ann., 349 (2011), 215–262, arXiv: 0911.3863 | DOI | MR | Zbl