@article{SIGMA_2017_13_a94,
author = {Oksana Bihun and Sarbarish Chakravarty},
title = {The {Chazy} {XII} {Equation} and {Schwarz} {Triangle} {Functions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a94/}
}
Oksana Bihun; Sarbarish Chakravarty. The Chazy XII Equation and Schwarz Triangle Functions. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a94/
[1] Ablowitz M. J., Chakravarty S., Halburd R., “The generalized Chazy equation and Schwarzian triangle functions”, Asian J. Math., 2 (1998), 619–624 | DOI | MR | Zbl
[2] Ablowitz M. J., Chakravarty S., Halburd R., “The generalized Chazy equation from the self-duality equations”, Stud. Appl. Math., 103 (1999), 75–88 | DOI | MR | Zbl
[3] Atiyah M., Hitchin N., The geometry and dynamics of magnetic monopoles, M.B. Porter Lectures, Princeton University Press, Princeton, NJ, 1988 | DOI | MR | Zbl
[4] Bureau F. J., “Integration of some nonlinear systems of ordinary differential equations”, Ann. Mat. Pura Appl., 94 (1972), 345–359 | DOI | MR | Zbl
[5] Chakravarty S., “Differential equations for triangle groups”, Algebraic and Geometric Aspects of Integrable Systems and Random Matrices, Contemp. Math., 593, Amer. Math. Soc., Providence, RI, 2013, 179–204 | DOI | MR | Zbl
[6] Chakravarty S., Ablowitz M. J., “Integrability, monodromy evolving deformations, and self-dual Bianchi IX systems”, Phys. Rev. Lett., 76 (1996), 857–860 | DOI | MR | Zbl
[7] Chakravarty S., Ablowitz M. J., “Parameterizations of the Chazy equation”, Stud. Appl. Math., 124 (2010), 105–135, arXiv: 0902.3468 | DOI | MR | Zbl
[8] Chakravarty S., Ablowitz M. J., Clarkson P. A., “Reductions of self-dual {Y}ang–{M}ills fields and classical systems”, Phys. Rev. Lett., 65 (1990), 1085–1087 | DOI | MR | Zbl
[9] Chakravarty S., Ablowitz M. J., Takhtajan L. A., “Self-dual Yang–Mills equation and new special functions in integrable systems”, Nonlinear Evolution Equations and Dynamical Systems (Baia Verde, 1991), World Sci. Publ., River Edge, NJ, 1992, 3–11 | MR | Zbl
[10] Chazy J., “Sur les équations différentielles du troisième ordre et d'ordre supérieur dont l'intégrale générale a ses points critiques fixes”, Acta Math., 34 (1911), 317–385 | DOI | MR | Zbl
[11] Clarkson P. A., Olver P. J., “Symmetry and the Chazy equation”, J. Differential Equations, 124 (1996), 225–246 | DOI | MR | Zbl
[12] Cosgrove C. M., “Chazy classes IX-XI of third-order differential equations”, Stud. Appl. Math., 104 (2000), 171–228 | DOI | MR | Zbl
[13] Darboux G., “Mémoire sur la théorie des coordonnées curvilignes, et des systèmes orthogonaux”, Ann. Sci. École Norm. Sup. (2), 7 (1878), 101–150 | DOI | MR
[14] Dubrovin B., “Geometry of $2$D topological field theories”, Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math., 1620, Springer, Berlin, 1996, 120–348, arXiv: hep-th/9407018 | DOI | MR | Zbl
[15] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. 1, McGraw-Hill, 1953
[16] Ferapontov E. V., Galvão C.A.P., Mokhov O. I., Nutku Y., “Bi-{H}amiltonian structure of equations of associativity in $2$-d topological field theory”, Comm. Math. Phys., 186 (1997), 649–669 | DOI | MR | Zbl
[17] Ford L. R., Automorphic functions, 2nd ed., Chelsea Publishing Co., New York, 1951 | MR | Zbl
[18] Goursat E., “Sur l'équation différentielle linéaire, qui admet pour intégrale la série hypergéométrique”, Ann. Sci. École Norm. Sup. (2), 10 (1881), 3–142 | DOI | MR
[19] Halphen G., “Sur une système d'équations différentielles”, C.R. Acad. Sci. Paris, 92 (1881), 1101–1103
[20] Halphen G., “Sur certains système d'équations différentielles”, C.R. Acad. Sci. Paris, 92 (1881), 1404–1407
[21] Hitchin N. J., “Twistor spaces, Einstein metrics and isomonodromic deformations”, J. Differential Geom., 42 (1995), 30–112 | DOI | MR | Zbl
[22] Hitchin N. J., “Hypercomplex manifolds and the space of framings”, The Geometric Universe (Oxford, 1996), Oxford Univ. Press, Oxford, 1998, 9–30 | MR | Zbl
[23] Maier R. S., “Nonlinear differential equations satisfied by certain classical modular forms”, Manuscripta Math., 134 (2011), 1–42, arXiv: 0807.1081 | DOI | MR | Zbl
[24] Nehari Z., Conformal mapping, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1952 | MR | Zbl
[25] Ramanujan S., “On certain arithmetical functions”, Trans. Cambridge Philos. Soc., 22 (1916), 159–186
[26] Ramanujan S., Notebooks, v. 1, 2, Tata Institute of Fundamental Research, Bombay, 1957 | MR | Zbl
[27] Ramanujan S., Collected Papers, Amer. Math. Soc., Providence, RI, 2000 | MR
[28] Randall M., “Flat $(2,3,5)$-distributions and Chazy's equations”, SIGMA, 12 (2016), 029, 28 pp., arXiv: 1506.02473 | DOI | MR | Zbl
[29] Randall M., Schwarz triangle functions and duality for certain parameters of the generalised Chazy equation, arXiv: 1607.04961
[30] Rosenhead L. (ed.), Laminar boundary layers, Clarendon Press, Oxford, 1963 | MR | Zbl
[31] Schwarz H. A., “Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt”, J. Reine Angew. Math., 75 (1873), 292–335 | DOI | MR
[32] Vidūnas R., “Algebraic transformations of Gauss hypergeometric functions”, Funkcial. Ekvac., 52 (2009), 139–180, arXiv: math.CA/0408269 | DOI | MR | Zbl