James' Submodule Theorem and the Steinberg Module
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

James' submodule theorem is a fundamental result in the representation theory of the symmetric groups and the finite general linear groups. In this note we consider a version of that theorem for a general finite group with a split $BN$-pair. This gives rise to a distinguished composition factor of the Steinberg module, first described by Hiss via a somewhat different method. It is a major open problem to determine the dimension of this composition factor.
Keywords: groups with a $BN$-pair; Steinberg representation; modular representations.
@article{SIGMA_2017_13_a90,
     author = {Meinolf Geck},
     title = {James' {Submodule} {Theorem} and the {Steinberg} {Module}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a90/}
}
TY  - JOUR
AU  - Meinolf Geck
TI  - James' Submodule Theorem and the Steinberg Module
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a90/
LA  - en
ID  - SIGMA_2017_13_a90
ER  - 
%0 Journal Article
%A Meinolf Geck
%T James' Submodule Theorem and the Steinberg Module
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a90/
%G en
%F SIGMA_2017_13_a90
Meinolf Geck. James' Submodule Theorem and the Steinberg Module. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a90/

[1] Carter R. W., Finite groups of Lie type. Conjugacy classes and complex characters, Wiley Classics Library, John Wiley Sons, Ltd., Chichester, 1993 | MR

[2] Digne F., Michel J., Representations of finite groups of Lie type, London Mathematical Society Student Texts, 21, Cambridge University Press, Cambridge, 1991 | DOI | MR | Zbl

[3] Geck M., “On the modular composition factors of the Steinberg representation”, J. Algebra, 475 (2017), 370–391 | DOI | MR | Zbl

[4] Gow R., “The Steinberg lattice of a finite {C}hevalley group and its modular reduction”, J. London Math. Soc., 67 (2003), 593–608 | DOI | MR | Zbl

[5] Hiss G., “Harish-Chandra series of Brauer characters in a finite group with a split $BN$-pair”, J. London Math. Soc., 48 (1993), 219–228 | DOI | MR | Zbl

[6] James G. D., Representations of general linear groups, London Mathematical Society Lecture Note Series, 94, Cambridge University Press, Cambridge, 1984 | DOI | MR | Zbl

[7] Landrock P., Michler G. O., “Principal $2$-blocks of the simple groups of Ree type”, Trans. Amer. Math. Soc., 260 (1980), 83–111 | DOI | MR | Zbl

[8] Steinberg R., “Prime power representations of finite linear groups. II”, Canad. J. Math., 9 (1957), 347–351 | DOI | MR | Zbl

[9] Szechtman F., “Steinberg lattice of the general linear group and its modular reduction”, J. Group Theory, 14 (2011), 603–635, arXiv: 0812.2232 | DOI | MR | Zbl

[10] Tinberg N. B., “The Steinberg component of a finite group with a split $(B,N)$-pair”, J. Algebra, 104 (1986), 126–134 | DOI | MR | Zbl