@article{SIGMA_2017_13_a89,
author = {Adhemar Bultheel and Ruyman Cruz-Barroso and Andreas Lasarow},
title = {Orthogonal {Rational} {Functions} on the {Unit} {Circle} with {Prescribed} {Poles} not on the {Unit} {Circle}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a89/}
}
TY - JOUR AU - Adhemar Bultheel AU - Ruyman Cruz-Barroso AU - Andreas Lasarow TI - Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a89/ LA - en ID - SIGMA_2017_13_a89 ER -
%0 Journal Article %A Adhemar Bultheel %A Ruyman Cruz-Barroso %A Andreas Lasarow %T Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a89/ %G en %F SIGMA_2017_13_a89
Adhemar Bultheel; Ruyman Cruz-Barroso; Andreas Lasarow. Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a89/
[1] Ammar G., Gragg W., Reichel L., “Constructing a unitary Hessenberg matrix from spectral data”, Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms (Leuven, 1988), NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 70, eds. G. Golub, P. Van Dooren, Springer, Berlin, 1991, 385–395 | MR
[2] Ammar G. S., He C. Y., “On an inverse eigenvalue problem for unitary Hessenberg matrices”, Linear Algebra Appl., 218 (1995), 263–271 | DOI | MR | Zbl
[3] Aurentz J. L., Mach T., Vandebril R., Watkins D. S., “Fast and stable unitary QR algorithm”, Electron. Trans. Numer. Anal., 44 (2015), 327–341 | MR | Zbl
[4] Beckermann B., Güttel S., “Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions”, Numer. Math., 121 (2012), 205–236 | DOI | MR | Zbl
[5] Beckermann B., Güttel S., Vandebril R., “On the convergence of rational Ritz values”, SIAM J. Matrix Anal. Appl., 31 (2010), 1740–1774 | DOI | MR | Zbl
[6] Bultheel A., Cantero M.-J., “A matricial computation of rational quadrature formulas on the unit circle”, Numer. Algorithms, 52 (2009), 47–68 | DOI | MR | Zbl
[7] Bultheel A., Cantero M.-J., Cruz-Barroso R., “Matrix methods for quadrature formulas on the unit circle. A survey”, J. Comput. Appl. Math., 284 (2015), 78–100 | DOI | MR | Zbl
[8] Bultheel A., Díaz-Mendoza C., González-Vera P., Orive R., “On the convergence of certain Gauss-type quadrature formulas for unbounded intervals”, Math. Comp., 69 (2000), 721–747 | DOI | MR | Zbl
[9] Bultheel A., González-Vera P., Hendriksen E., Njåstad O., Orthogonal rational functions, Cambridge Monographs on Applied and Computational Mathematics, 5, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl
[10] Bultheel A., González-Vera P., Hendriksen E., Njåstad O., “Computation of rational Szegő–Lobatto quadrature formulas”, Appl. Numer. Math., 60 (2010), 1251–1263 | DOI | MR | Zbl
[11] Bultheel A., González-Vera P., Hendriksen E., Njåstad O., “Rational quadrature formulas on the unit circle with prescribed nodes and maximal domain of validity”, IMA J. Numer. Anal., 30 (2010), 940–963 | DOI | MR | Zbl
[12] Cantero M. J., Moral L., Velázquez L., “Minimal representations of unitary operators and orthogonal polynomials on the unit circle”, Linear Algebra Appl., 408 (2005), 40–65, arXiv: math.CA/0405246 | DOI | MR | Zbl
[13] Chesnokov A., Deckers K., Van Barel M., “A numerical solution of the constrained weighted energy problem”, J. Comput. Appl. Math., 235 (2010), 950–965 | DOI | MR | Zbl
[14] Chu M. T., Golub G. H., “Structured inverse eigenvalue problems”, Acta Numer., 11 (2002), 1–71 | DOI | MR | Zbl
[15] Cruz-Barroso R., Daruis L., González-Vera P., Njåstad O., “Sequences of orthogonal Laurent polynomials, bi-orthogonality and quadrature formulas on the unit circle”, J. Comput. Appl. Math., 200 (2007), 424–440 | DOI | MR | Zbl
[16] Cruz-Barroso R., Delvaux S., “Orthogonal Laurent polynomials on the unit circle and snake-shaped matrix factorizations”, J. Approx. Theory, 161 (2009), 65–87, arXiv: 0712.2738 | DOI | MR | Zbl
[17] Cruz-Barroso R., Díaz Mendoza C., Perdomo-Pío F., “Szegő-type quadrature formulas”, J. Math. Anal. Appl., 455 (2017), 592–605 | DOI | MR | Zbl
[18] Cruz-Barroso R., González-Vera P., “A Christoffel–Darboux formula and a Favard's theorem for orthogonal Laurent polynomials on the unit circle”, J. Comput. Appl. Math., 179 (2005), 157–173 | DOI | MR | Zbl
[19] de la Calle Ysern B., González-Vera P., “Rational quadrature formulae on the unit circle with arbitrary poles”, Numer. Math., 107 (2007), 559–587 | DOI | MR | Zbl
[20] Díaz-Mendoza C., González-Vera P., Jiménez-Paiz M., “Strong Stieltjes distributions and orthogonal Laurent polynomials with applications to quadratures and Padé approximation”, Math. Comp., 74 (2005), 1843–1870 | DOI | MR
[21] Fasino D., Gemignani L., “Direct and inverse eigenvalue problems for diagonal-plus-semiseparable matrices”, Numer. Algorithms, 34 (2003), 313–324 | DOI | MR | Zbl
[22] Fasino D., Gemignani L., “Structured eigenvalue problems for rational Gauss quadrature”, Numer. Algorithms, 45 (2007), 195–204 | DOI | MR | Zbl
[23] Fritzsche B., Kirstein B., Lasarow A., “Orthogonal rational matrix-valued functions on the unit circle”, Math. Nachr., 278 (2005), 525–553 | DOI | MR | Zbl
[24] Fritzsche B., Kirstein B., Lasarow A., “Orthogonal rational matrix-valued functions on the unit circle: recurrence relations and a Favard-type theorem”, Math. Nachr., 279 (2006), 513–542 | DOI | MR | Zbl
[25] Fritzsche B., Kirstein B., Lasarow A., “Para-orthogonal rational matrix-valued functions on the unit circle”, Oper. Matrices, 6 (2012), 631–679 | DOI | MR
[26] Gemignani L., “A unitary Hessenberg $QR$-based algorithm via semiseparable matrices”, J. Comput. Appl. Math., 184 (2005), 505–517 | DOI | MR | Zbl
[27] Golub G. H., Meurant G., Matrices, moments and quadrature with applications, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2010 | MR | Zbl
[28] Gragg W. B., “Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle”, J. Comput. Appl. Math., 46 (1993), 183–198 | DOI | MR | Zbl
[29] Güttel S., “Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection”, GAMM-Mitt., 36 (2013), 8–31 | DOI | MR | Zbl
[30] Güttel S., Knizhnerman L., “A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions”, BIT, 53 (2013), 595–616 | DOI | MR | Zbl
[31] Jones W. B., Njåstad O., Thron W. J., “Two-point Padé expansions for a family of analytic functions”, J. Comput. Appl. Math., 9 (1983), 105–123 | DOI | MR | Zbl
[32] Jones W. B., Thron W. J., Njåstad O., “Orthogonal Laurent polynomials and the strong Hamburger moment problem”, J. Math. Anal. Appl., 98 (1984), 528–554 | DOI | MR | Zbl
[33] Knizhnerman L., Simoncini V., “A new investigation of the extended Krylov subspace method for matrix function evaluations”, Numer. Linear Algebra Appl., 17 (2010), 615–638 | DOI | MR | Zbl
[34] Lasarow A., Aufbau einer Szegő-Theorie für rationale Matrixfunktionen, Ph.D. Thesis, Universität Leipzig, Fak. Mathematik Informatik, 2000 | Zbl
[35] Mach T., Van Barel M., Vandebril R., Inverse eigenvalue problems linked to rational Arnoldi, and rational, (non)symmetric Lanczos, Tech. Rep. TW629, Dept. Computer Science, KU Leuven, 2013
[36] Mach T., Van Barel M., Vandebril R., “Inverse eigenvalue problems for extended Hessenberg and extended tridiagonal matrices”, J. Comput. Appl. Math., 272 (2014), 377–398 | DOI | MR | Zbl
[37] Mertens C., Short recurrence relations for (extended) Krylov subspaces, Ph.D. Thesis, Department of Computer Science, Faculty of Engineering Science, KU Leuven, 2016 https://lirias.kuleuven.be/handle/123456789/538706
[38] Mertens C., Vandebril R., “Short recurrences for computing extended Krylov bases for Hermitian and unitary matrices”, Numer. Math., 131 (2015), 303–328 | DOI | MR | Zbl
[39] Njåstad O., Santos-León J. C., “Domain of validity of Szegö quadrature formulas”, J. Comput. Appl. Math., 202 (2007), 440–449 | DOI | MR
[40] Thron W. J., “$L$-polynomials orthogonal on the unit circle”, Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 271–278 | DOI | MR | Zbl
[41] Van Barel M., Bultheel A., “Discrete linearized least-squares rational approximation on the unit circle”, J. Comput. Appl. Math., 50 (1994), 545–563 | DOI | MR | Zbl
[42] Van Barel M., Fasino D., Gemignani L., Mastronardi N., “Orthogonal rational functions and diagonal-plus-semiseparable matrices”, Advanced Signal Processing Algorithms, Architectures, and Implementations XII, Proceedings of SPIE, 4791, ed. F. Luk, SPIE, 2002, 162–170 | DOI
[43] Van Barel M., Fasino D., Gemignani L., Mastronardi N., “Orthogonal rational functions and structured matrices”, SIAM J. Matrix Anal. Appl., 26 (2005), 810–829 | DOI | MR | Zbl
[44] Van Beeumen R., Meerbergen K., Michiels W., “A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems”, SIAM J. Sci. Comput., 35 (2013), A327–A350 | DOI | MR | Zbl
[45] Vandebril R., Van Barel M., Mastronardi N., Matrix computations and semiseparable matrices, v. 1, Linear systems, Johns Hopkins University Press, Baltimore, MD, 2008 | MR
[46] Vandebril R., Van Barel M., Mastronardi N., Matrix computations and semiseparable matrices, v. 2, Eigenvalue and singular value methods, Johns Hopkins University Press, Baltimore, MD, 2008 | MR
[47] Velázquez L., “Spectral methods for orthogonal rational functions”, J. Funct. Anal., 254 (2008), 954–986, arXiv: 0704.3456 | DOI | MR | Zbl