Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Orthogonal rational functions (ORF) on the unit circle generalize orthogonal polynomials (poles at infinity) and Laurent polynomials (poles at zero and infinity). In this paper we investigate the properties of and the relation between these ORF when the poles are all outside or all inside the unit disk, or when they can be anywhere in the extended complex plane outside the unit circle. Some properties of matrices that are the product of elementary unitary transformations will be proved and some connections with related algorithms for direct and inverse eigenvalue problems will be explained.
Keywords: orthogonal rational functions; rational Szegő quadrature; spectral method; rational Krylov method; AMPD matrix.
@article{SIGMA_2017_13_a89,
     author = {Adhemar Bultheel and Ruyman Cruz-Barroso and Andreas Lasarow},
     title = {Orthogonal {Rational} {Functions} on the {Unit} {Circle} with {Prescribed} {Poles} not on the {Unit} {Circle}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a89/}
}
TY  - JOUR
AU  - Adhemar Bultheel
AU  - Ruyman Cruz-Barroso
AU  - Andreas Lasarow
TI  - Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a89/
LA  - en
ID  - SIGMA_2017_13_a89
ER  - 
%0 Journal Article
%A Adhemar Bultheel
%A Ruyman Cruz-Barroso
%A Andreas Lasarow
%T Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a89/
%G en
%F SIGMA_2017_13_a89
Adhemar Bultheel; Ruyman Cruz-Barroso; Andreas Lasarow. Orthogonal Rational Functions on the Unit Circle with Prescribed Poles not on the Unit Circle. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a89/

[1] Ammar G., Gragg W., Reichel L., “Constructing a unitary Hessenberg matrix from spectral data”, Numerical Linear Algebra, Digital Signal Processing and Parallel Algorithms (Leuven, 1988), NATO Adv. Sci. Inst. Ser. F Comput. Systems Sci., 70, eds. G. Golub, P. Van Dooren, Springer, Berlin, 1991, 385–395 | MR

[2] Ammar G. S., He C. Y., “On an inverse eigenvalue problem for unitary Hessenberg matrices”, Linear Algebra Appl., 218 (1995), 263–271 | DOI | MR | Zbl

[3] Aurentz J. L., Mach T., Vandebril R., Watkins D. S., “Fast and stable unitary QR algorithm”, Electron. Trans. Numer. Anal., 44 (2015), 327–341 | MR | Zbl

[4] Beckermann B., Güttel S., “Superlinear convergence of the rational Arnoldi method for the approximation of matrix functions”, Numer. Math., 121 (2012), 205–236 | DOI | MR | Zbl

[5] Beckermann B., Güttel S., Vandebril R., “On the convergence of rational Ritz values”, SIAM J. Matrix Anal. Appl., 31 (2010), 1740–1774 | DOI | MR | Zbl

[6] Bultheel A., Cantero M.-J., “A matricial computation of rational quadrature formulas on the unit circle”, Numer. Algorithms, 52 (2009), 47–68 | DOI | MR | Zbl

[7] Bultheel A., Cantero M.-J., Cruz-Barroso R., “Matrix methods for quadrature formulas on the unit circle. A survey”, J. Comput. Appl. Math., 284 (2015), 78–100 | DOI | MR | Zbl

[8] Bultheel A., Díaz-Mendoza C., González-Vera P., Orive R., “On the convergence of certain Gauss-type quadrature formulas for unbounded intervals”, Math. Comp., 69 (2000), 721–747 | DOI | MR | Zbl

[9] Bultheel A., González-Vera P., Hendriksen E., Njåstad O., Orthogonal rational functions, Cambridge Monographs on Applied and Computational Mathematics, 5, Cambridge University Press, Cambridge, 1999 | DOI | MR | Zbl

[10] Bultheel A., González-Vera P., Hendriksen E., Njåstad O., “Computation of rational Szegő–Lobatto quadrature formulas”, Appl. Numer. Math., 60 (2010), 1251–1263 | DOI | MR | Zbl

[11] Bultheel A., González-Vera P., Hendriksen E., Njåstad O., “Rational quadrature formulas on the unit circle with prescribed nodes and maximal domain of validity”, IMA J. Numer. Anal., 30 (2010), 940–963 | DOI | MR | Zbl

[12] Cantero M. J., Moral L., Velázquez L., “Minimal representations of unitary operators and orthogonal polynomials on the unit circle”, Linear Algebra Appl., 408 (2005), 40–65, arXiv: math.CA/0405246 | DOI | MR | Zbl

[13] Chesnokov A., Deckers K., Van Barel M., “A numerical solution of the constrained weighted energy problem”, J. Comput. Appl. Math., 235 (2010), 950–965 | DOI | MR | Zbl

[14] Chu M. T., Golub G. H., “Structured inverse eigenvalue problems”, Acta Numer., 11 (2002), 1–71 | DOI | MR | Zbl

[15] Cruz-Barroso R., Daruis L., González-Vera P., Njåstad O., “Sequences of orthogonal Laurent polynomials, bi-orthogonality and quadrature formulas on the unit circle”, J. Comput. Appl. Math., 200 (2007), 424–440 | DOI | MR | Zbl

[16] Cruz-Barroso R., Delvaux S., “Orthogonal Laurent polynomials on the unit circle and snake-shaped matrix factorizations”, J. Approx. Theory, 161 (2009), 65–87, arXiv: 0712.2738 | DOI | MR | Zbl

[17] Cruz-Barroso R., Díaz Mendoza C., Perdomo-Pío F., “Szegő-type quadrature formulas”, J. Math. Anal. Appl., 455 (2017), 592–605 | DOI | MR | Zbl

[18] Cruz-Barroso R., González-Vera P., “A Christoffel–Darboux formula and a Favard's theorem for orthogonal Laurent polynomials on the unit circle”, J. Comput. Appl. Math., 179 (2005), 157–173 | DOI | MR | Zbl

[19] de la Calle Ysern B., González-Vera P., “Rational quadrature formulae on the unit circle with arbitrary poles”, Numer. Math., 107 (2007), 559–587 | DOI | MR | Zbl

[20] Díaz-Mendoza C., González-Vera P., Jiménez-Paiz M., “Strong Stieltjes distributions and orthogonal Laurent polynomials with applications to quadratures and Padé approximation”, Math. Comp., 74 (2005), 1843–1870 | DOI | MR

[21] Fasino D., Gemignani L., “Direct and inverse eigenvalue problems for diagonal-plus-semiseparable matrices”, Numer. Algorithms, 34 (2003), 313–324 | DOI | MR | Zbl

[22] Fasino D., Gemignani L., “Structured eigenvalue problems for rational Gauss quadrature”, Numer. Algorithms, 45 (2007), 195–204 | DOI | MR | Zbl

[23] Fritzsche B., Kirstein B., Lasarow A., “Orthogonal rational matrix-valued functions on the unit circle”, Math. Nachr., 278 (2005), 525–553 | DOI | MR | Zbl

[24] Fritzsche B., Kirstein B., Lasarow A., “Orthogonal rational matrix-valued functions on the unit circle: recurrence relations and a Favard-type theorem”, Math. Nachr., 279 (2006), 513–542 | DOI | MR | Zbl

[25] Fritzsche B., Kirstein B., Lasarow A., “Para-orthogonal rational matrix-valued functions on the unit circle”, Oper. Matrices, 6 (2012), 631–679 | DOI | MR

[26] Gemignani L., “A unitary Hessenberg $QR$-based algorithm via semiseparable matrices”, J. Comput. Appl. Math., 184 (2005), 505–517 | DOI | MR | Zbl

[27] Golub G. H., Meurant G., Matrices, moments and quadrature with applications, Princeton Series in Applied Mathematics, Princeton University Press, Princeton, NJ, 2010 | MR | Zbl

[28] Gragg W. B., “Positive definite Toeplitz matrices, the Arnoldi process for isometric operators, and Gaussian quadrature on the unit circle”, J. Comput. Appl. Math., 46 (1993), 183–198 | DOI | MR | Zbl

[29] Güttel S., “Rational Krylov approximation of matrix functions: numerical methods and optimal pole selection”, GAMM-Mitt., 36 (2013), 8–31 | DOI | MR | Zbl

[30] Güttel S., Knizhnerman L., “A black-box rational Arnoldi variant for Cauchy–Stieltjes matrix functions”, BIT, 53 (2013), 595–616 | DOI | MR | Zbl

[31] Jones W. B., Njåstad O., Thron W. J., “Two-point Padé expansions for a family of analytic functions”, J. Comput. Appl. Math., 9 (1983), 105–123 | DOI | MR | Zbl

[32] Jones W. B., Thron W. J., Njåstad O., “Orthogonal Laurent polynomials and the strong Hamburger moment problem”, J. Math. Anal. Appl., 98 (1984), 528–554 | DOI | MR | Zbl

[33] Knizhnerman L., Simoncini V., “A new investigation of the extended Krylov subspace method for matrix function evaluations”, Numer. Linear Algebra Appl., 17 (2010), 615–638 | DOI | MR | Zbl

[34] Lasarow A., Aufbau einer Szegő-Theorie für rationale Matrixfunktionen, Ph.D. Thesis, Universität Leipzig, Fak. Mathematik Informatik, 2000 | Zbl

[35] Mach T., Van Barel M., Vandebril R., Inverse eigenvalue problems linked to rational Arnoldi, and rational, (non)symmetric Lanczos, Tech. Rep. TW629, Dept. Computer Science, KU Leuven, 2013

[36] Mach T., Van Barel M., Vandebril R., “Inverse eigenvalue problems for extended Hessenberg and extended tridiagonal matrices”, J. Comput. Appl. Math., 272 (2014), 377–398 | DOI | MR | Zbl

[37] Mertens C., Short recurrence relations for (extended) Krylov subspaces, Ph.D. Thesis, Department of Computer Science, Faculty of Engineering Science, KU Leuven, 2016 https://lirias.kuleuven.be/handle/123456789/538706

[38] Mertens C., Vandebril R., “Short recurrences for computing extended Krylov bases for Hermitian and unitary matrices”, Numer. Math., 131 (2015), 303–328 | DOI | MR | Zbl

[39] Njåstad O., Santos-León J. C., “Domain of validity of Szegö quadrature formulas”, J. Comput. Appl. Math., 202 (2007), 440–449 | DOI | MR

[40] Thron W. J., “$L$-polynomials orthogonal on the unit circle”, Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), Math. Appl., 43, Reidel, Dordrecht, 1988, 271–278 | DOI | MR | Zbl

[41] Van Barel M., Bultheel A., “Discrete linearized least-squares rational approximation on the unit circle”, J. Comput. Appl. Math., 50 (1994), 545–563 | DOI | MR | Zbl

[42] Van Barel M., Fasino D., Gemignani L., Mastronardi N., “Orthogonal rational functions and diagonal-plus-semiseparable matrices”, Advanced Signal Processing Algorithms, Architectures, and Implementations XII, Proceedings of SPIE, 4791, ed. F. Luk, SPIE, 2002, 162–170 | DOI

[43] Van Barel M., Fasino D., Gemignani L., Mastronardi N., “Orthogonal rational functions and structured matrices”, SIAM J. Matrix Anal. Appl., 26 (2005), 810–829 | DOI | MR | Zbl

[44] Van Beeumen R., Meerbergen K., Michiels W., “A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems”, SIAM J. Sci. Comput., 35 (2013), A327–A350 | DOI | MR | Zbl

[45] Vandebril R., Van Barel M., Mastronardi N., Matrix computations and semiseparable matrices, v. 1, Linear systems, Johns Hopkins University Press, Baltimore, MD, 2008 | MR

[46] Vandebril R., Van Barel M., Mastronardi N., Matrix computations and semiseparable matrices, v. 2, Eigenvalue and singular value methods, Johns Hopkins University Press, Baltimore, MD, 2008 | MR

[47] Velázquez L., “Spectral methods for orthogonal rational functions”, J. Funct. Anal., 254 (2008), 954–986, arXiv: 0704.3456 | DOI | MR | Zbl