@article{SIGMA_2017_13_a88,
author = {Andreas Malmendier and Tony Shaska},
title = {A {Universal} {Genus-Two} {Curve} from {Siegel} {Modular} {Forms}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a88/}
}
Andreas Malmendier; Tony Shaska. A Universal Genus-Two Curve from Siegel Modular Forms. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a88/
[1] Beshaj L., Hidalgo R., Malmendier A., Kruk S., Quispe S., Shaska T., “Rational points on the moduli space of genus two”, Algebraic Curves and their Fibrations in Mathematical Physics and Arithmetic Geometry, Contemporary Math., 703, Amer. Math. Soc., Providence, RI, 2018, 87–120
[2] Bolza O., “On binary sextics with linear transformations into themselves”, Amer. J. Math., 10 (1887), 47–70 | DOI | MR
[3] Booker A. R., Sijsling J., Sutherland A. V., Voight J., Yasaki D., “A database of genus-2 curves over the rational numbers”, LMS J. Comput. Math., 19, suppl. A (2016), 235–254, arXiv: 1602.03715 | DOI | MR
[4] Bröker R., Howe E. W., Lauter K. E., Stevenhagen P., “Genus-2 curves and Jacobians with a given number of points”, LMS J. Comput. Math., 18 (2015), 170–197, arXiv: 1403.6911 | DOI | MR | Zbl
[5] Clebsch A., Gordan P., Theorie der Abelschen Functionen, Thesaurus Mathematicae, 7, Physica-Verlag, Würzburg, 1967 | MR
[6] Freitag E., Siegelsche Modulfunktionen, Grundlehren der Mathematischen Wissenschaften, 254, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl
[7] Goren E. Z., Lauter K. E., “Genus 2 curves with complex multiplication”, Int. Math. Res. Not., 2012 (2012), 1068–1142, arXiv: 1003.4759 | DOI | MR | Zbl
[8] Gritsenko V. A., Nikulin V. V., “Igusa modular forms and “the simplest” Lorentzian Kac–Moody algebras”, Sb. Math., 187 (1996), 1601–1641 | DOI | MR | Zbl
[9] Harris J., Morrison I., Moduli of curves, Graduate Texts in Mathematics, 187, Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[10] Igusa J. I., “Arithmetic variety of moduli for genus two”, Ann. of Math., 72 (1960), 612–649 | DOI | MR | Zbl
[11] Igusa J. I., “On Siegel modular forms of genus two”, Amer. J. Math., 84 (1962), 175–200 | DOI | MR
[12] Igusa J. I., “Modular forms and projective invariants”, Amer. J. Math., 89 (1967), 817–855 | DOI | MR | Zbl
[13] Igusa J. I., “On the ring of modular forms of degree two over $\mathbf{Z}$”, Amer. J. Math., 101 (1979), 149–183 | DOI | MR | Zbl
[14] Krishnamoorthy V., Shaska T., Völklein H., “Invariants of binary forms”, Progress in Galois Theory, Dev. Math., 12, Springer, New York, 2005, 101–122, arXiv: 1209.0446 | DOI | MR | Zbl
[15] Lauter K., Naehrig M., Yang T., “Hilbert theta series and invariants of genus 2 curves”, J. Number Theory, 161 (2016), 146–174 | DOI | MR | Zbl
[16] Malmendier A., Morrison D. R., “K3 surfaces, modular forms, and non-geometric heterotic compactifications”, Lett. Math. Phys., 105 (2015), 1085–1118, arXiv: 1406.4873 | DOI | MR | Zbl
[17] Malmendier A., Shaska T., “The Satake sextic in F-theory”, J. Geom. Phys., 120 (2017), 290–305, arXiv: 1609.04341 | DOI | MR | Zbl
[18] Mestre J. F., “Construction de courbes de genre $2$ à partir de leurs modules”, Effective Methods in Algebraic Geometry (Castiglioncello, 1990), Progr. Math., 94, Birkhäuser Boston, Boston, MA, 1991, 313–334 | DOI | MR
[19] Shaska T., Völklein H., “Elliptic subfields and automorphisms of genus 2 function fields”, Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, 703–723, arXiv: math.AG/0107142 | DOI | MR