A Universal Genus-Two Curve from Siegel Modular Forms
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mathfrak{p} $ be any point in the moduli space of genus-two curves $\mathcal{M}_2$ and $K$ its field of moduli. We provide a universal equation of a genus-two curve $\mathcal C_{\alpha, \beta}$ defined over $K(\alpha, \beta)$, corresponding to $\mathfrak{p}$, where $\alpha $ and $\beta$ satisfy a quadratic $\alpha^2+ b \beta^2= c$ such that $b$ and $c$ are given in terms of ratios of Siegel modular forms. The curve $\mathcal C_{\alpha, \beta}$ is defined over the field of moduli $K$ if and only if the quadratic has a $K$-rational point $(\alpha, \beta)$. We discover some interesting symmetries of the Weierstrass equation of $\mathcal C_{\alpha, \beta}$. This extends previous work of Mestre and others.
Keywords: genus-two curves; Siegel modular forms.
@article{SIGMA_2017_13_a88,
     author = {Andreas Malmendier and Tony Shaska},
     title = {A {Universal} {Genus-Two} {Curve} from {Siegel} {Modular} {Forms}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a88/}
}
TY  - JOUR
AU  - Andreas Malmendier
AU  - Tony Shaska
TI  - A Universal Genus-Two Curve from Siegel Modular Forms
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a88/
LA  - en
ID  - SIGMA_2017_13_a88
ER  - 
%0 Journal Article
%A Andreas Malmendier
%A Tony Shaska
%T A Universal Genus-Two Curve from Siegel Modular Forms
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a88/
%G en
%F SIGMA_2017_13_a88
Andreas Malmendier; Tony Shaska. A Universal Genus-Two Curve from Siegel Modular Forms. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a88/

[1] Beshaj L., Hidalgo R., Malmendier A., Kruk S., Quispe S., Shaska T., “Rational points on the moduli space of genus two”, Algebraic Curves and their Fibrations in Mathematical Physics and Arithmetic Geometry, Contemporary Math., 703, Amer. Math. Soc., Providence, RI, 2018, 87–120

[2] Bolza O., “On binary sextics with linear transformations into themselves”, Amer. J. Math., 10 (1887), 47–70 | DOI | MR

[3] Booker A. R., Sijsling J., Sutherland A. V., Voight J., Yasaki D., “A database of genus-2 curves over the rational numbers”, LMS J. Comput. Math., 19, suppl. A (2016), 235–254, arXiv: 1602.03715 | DOI | MR

[4] Bröker R., Howe E. W., Lauter K. E., Stevenhagen P., “Genus-2 curves and Jacobians with a given number of points”, LMS J. Comput. Math., 18 (2015), 170–197, arXiv: 1403.6911 | DOI | MR | Zbl

[5] Clebsch A., Gordan P., Theorie der Abelschen Functionen, Thesaurus Mathematicae, 7, Physica-Verlag, Würzburg, 1967 | MR

[6] Freitag E., Siegelsche Modulfunktionen, Grundlehren der Mathematischen Wissenschaften, 254, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[7] Goren E. Z., Lauter K. E., “Genus 2 curves with complex multiplication”, Int. Math. Res. Not., 2012 (2012), 1068–1142, arXiv: 1003.4759 | DOI | MR | Zbl

[8] Gritsenko V. A., Nikulin V. V., “Igusa modular forms and “the simplest” Lorentzian Kac–Moody algebras”, Sb. Math., 187 (1996), 1601–1641 | DOI | MR | Zbl

[9] Harris J., Morrison I., Moduli of curves, Graduate Texts in Mathematics, 187, Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[10] Igusa J. I., “Arithmetic variety of moduli for genus two”, Ann. of Math., 72 (1960), 612–649 | DOI | MR | Zbl

[11] Igusa J. I., “On Siegel modular forms of genus two”, Amer. J. Math., 84 (1962), 175–200 | DOI | MR

[12] Igusa J. I., “Modular forms and projective invariants”, Amer. J. Math., 89 (1967), 817–855 | DOI | MR | Zbl

[13] Igusa J. I., “On the ring of modular forms of degree two over $\mathbf{Z}$”, Amer. J. Math., 101 (1979), 149–183 | DOI | MR | Zbl

[14] Krishnamoorthy V., Shaska T., Völklein H., “Invariants of binary forms”, Progress in Galois Theory, Dev. Math., 12, Springer, New York, 2005, 101–122, arXiv: 1209.0446 | DOI | MR | Zbl

[15] Lauter K., Naehrig M., Yang T., “Hilbert theta series and invariants of genus 2 curves”, J. Number Theory, 161 (2016), 146–174 | DOI | MR | Zbl

[16] Malmendier A., Morrison D. R., “K3 surfaces, modular forms, and non-geometric heterotic compactifications”, Lett. Math. Phys., 105 (2015), 1085–1118, arXiv: 1406.4873 | DOI | MR | Zbl

[17] Malmendier A., Shaska T., “The Satake sextic in F-theory”, J. Geom. Phys., 120 (2017), 290–305, arXiv: 1609.04341 | DOI | MR | Zbl

[18] Mestre J. F., “Construction de courbes de genre $2$ à partir de leurs modules”, Effective Methods in Algebraic Geometry (Castiglioncello, 1990), Progr. Math., 94, Birkhäuser Boston, Boston, MA, 1991, 313–334 | DOI | MR

[19] Shaska T., Völklein H., “Elliptic subfields and automorphisms of genus 2 function fields”, Algebra, Arithmetic and Geometry with Applications (West Lafayette, IN, 2000), Springer, Berlin, 2004, 703–723, arXiv: math.AG/0107142 | DOI | MR