@article{SIGMA_2017_13_a87,
author = {Eugenio Massa and Ana Paula Peron and Emilio Porcu},
title = {Positive {Definite} {Functions} on {Complex} {Spheres} and their {Walks} through {Dimensions}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a87/}
}
TY - JOUR AU - Eugenio Massa AU - Ana Paula Peron AU - Emilio Porcu TI - Positive Definite Functions on Complex Spheres and their Walks through Dimensions JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a87/ LA - en ID - SIGMA_2017_13_a87 ER -
%0 Journal Article %A Eugenio Massa %A Ana Paula Peron %A Emilio Porcu %T Positive Definite Functions on Complex Spheres and their Walks through Dimensions %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a87/ %G en %F SIGMA_2017_13_a87
Eugenio Massa; Ana Paula Peron; Emilio Porcu. Positive Definite Functions on Complex Spheres and their Walks through Dimensions. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a87/
[1] Aharmim B., Amal E. H., Fouzia E. W., Ghanmi A., “Generalized Zernike polynomials: operational formulae and generating functions”, Integral Transforms Spec. Funct., 26 (2015), 395–410, arXiv: 1312.3628 | DOI | MR | Zbl
[2] Aktaş R., Taşdelen F., Yavuz N., “Bilateral and bilinear generating functions for the generalized Zernike or disc polynomials”, Ars Combin., 111 (2013), 389–400 | MR | Zbl
[3] Beatson R. K., zu Castell W., “One-step recurrences for stationary random fields on the sphere”, SIGMA, 12 (2016), 043, 19 pp., arXiv: 1601.07743 | DOI | MR | Zbl
[4] Beatson R. K., zu Castell W., “Dimension hopping and families of strictly positive definite zonal basis functions on spheres”, J. Approx. Theory, 221 (2017), 22–37, arXiv: 1510.08658 | DOI | MR | Zbl
[5] Beazley Cohen P., Wolfart J., “Algebraic Appell–Lauricella functions”, Analysis, 12 (1992), 359–376 | DOI | MR | Zbl
[6] Berg C., “Stieltjes–Pick–Bernstein–Schoenberg and their connection to complete monotonicity”, Positive Definite Functions: from Schoenberg to Space-Time Challenges, eds. J. Mateu, E. Porcu, University Jaume I, Castellon, Spain, 2008, 15–45
[7] Berg C., Porcu E., “From Schoenberg coefficients to Schoenberg functions”, Constr. Approx., 45 (2017), 217–241, arXiv: 1505.05682 | DOI | MR | Zbl
[8] Beukers F., Heckman G., “Monodromy for the hypergeometric function $_nF_{n-1}$”, Invent. Math., 95 (1989), 325–354, arXiv: 1505.02900 | DOI | MR | Zbl
[9] Bod E., “Algebraicity of the Appell–Lauricella and Horn hypergeometric functions”, J. Differential Equations, 252 (2012), 541–566, arXiv: 1005.0317 | DOI | MR | Zbl
[10] Boyd J. N., Raychowdhury P. N., “Zonal harmonic functions from two-dimensional analogs of Jacobi polynomials”, Applicable Anal., 16 (1983), 243–259 | DOI | MR | Zbl
[11] Chen D., Menegatto V. A., Sun X., “A necessary and sufficient condition for strictly positive definite functions on spheres”, Proc. Amer. Math. Soc., 131 (2003), 2733–2740 | DOI | MR | Zbl
[12] Daley D. J., Porcu E., “Dimension walks and {S}choenberg spectral measures”, Proc. Amer. Math. Soc., 142 (2014), 1813–1824, arXiv: 1704.01237 | DOI | MR | Zbl
[13] Dreseler B., Hrach R., “Summability of Fourier expansions in terms of disc polynomials”, Functions, Series, Operators (Budapest, 1980), v. I, II, Colloq. Math. Soc. János Bolyai, 35, North-Holland, Amsterdam, 1983, 375–384 | MR
[14] Fasshauer G. E., “Positive definite kernels: past, present and future”, Proceedings of the Workshop on Kernel Functions and Meshless Methods, (Gotingen), Dolomites Research Notes on Approximation, 4, 2011, 21–63 | MR
[15] Folland G. B., “Spherical harmonic expansion of the Poisson–Szegő kernel for the ball”, Proc. Amer. Math. Soc., 47 (1975), 401–408 | DOI | MR | Zbl
[16] Gneiting T., “Compactly supported correlation functions”, J. Multivariate Anal., 83 (2002), 493–508 | DOI | MR | Zbl
[17] Gneiting T., “Strictly and non-strictly positive definite functions on spheres”, Bernoulli, 19 (2013), 1327–1349, arXiv: 1111.7077 | DOI | MR | Zbl
[18] Guella J., Menegatto V. A., “Unitarily invariant strictly positive definite kernels on sphere”, Positivity (to appear) | DOI | MR
[19] Guella J. C., Menegatto V. A., Peron A. P., “An extension of a theorem of Schoenberg to products of spheres”, Banach J. Math. Anal., 10 (2016), 671–685, arXiv: 1503.08174 | DOI | MR | Zbl
[20] Kato M., “Appell's $F_4$ with finite irreducible monodromy group”, Kyushu J. Math., 51 (1997), 125–147 | DOI | MR | Zbl
[21] Kato M., “Appell's hypergeometric systems $F_2$ with finite irreducible monodromy groups”, Kyushu J. Math., 54 (2000), 279–305 | DOI | MR | Zbl
[22] Koornwinder T. H., The addition formula for Jacobi polynomials. II. The Laplace type integral representation and the product formula, Report TW133, Math. Centrum Amsterdam, 1972 https://ir.cwi.nl/pub/7722 | MR
[23] Koornwinder T. H., The addition formula for Jacobi polynomials. III. Completion of the proof, Report TW135, Math. Centrum Amsterdam, 1972 https://ir.cwi.nl/pub/12598 | MR
[24] Matheron G., Les variables régionalisées et leur estimation, Masson, Paris, 1965
[25] Menegatto V. A., Peron A. P., “A complex approach to strict positive definiteness on spheres”, Integral Transform. Spec. Funct., 11 (2001), 377–396 | DOI | MR | Zbl
[26] Menegatto V. A., Peron A. P., “Positive definite kernels on complex spheres”, J. Math. Anal. Appl., 254 (2001), 219–232 | DOI | MR | Zbl
[27] Menegatto V. A., Peron A. P., Oliveira C. P., “On the construction of uniformly convergent disk polynomial expansions”, Collect. Math., 62 (2011), 151–159 | DOI | MR | Zbl
[28] Porcu E., Bevilacqua M., Genton M. G., “Spatio-temporal covariance and cross-covariance functions of the great circle distance on a sphere”, J. Amer. Statist. Assoc., 111 (2016), 888–898 | DOI | MR
[29] Porcu E., Zastavnyi V., “Generalized Askey functions and their walks through dimensions”, Expo. Math., 32 (2014), 190–198 | DOI | MR | Zbl
[30] Porcu E., Zastavnyi V., Bevilacqua M., “Buhmann covariance functions, their compact supports, and their smoothness”, Dolomites Res. Notes Approx., 10 (2017), 33–42, arXiv: 1606.09527 | DOI
[31] Sahai V., Verma A., “Recursion formulas for multivariable hypergeometric functions”, Asian-Eur. J. Math., 8 (2015), 1550082, 50 pp. | DOI | MR | Zbl
[32] Saran S., “Hypergeometric functions of three variables”, Ganita, 5 (1954), 77–91 | MR | Zbl
[33] Saran S., “Integrals associated with hypergeometric functions of three variables”, Proc. Nat. Inst. Sci. India. Part A, 21 (1955), 83–90 | MR | Zbl
[34] Saran S., “Integral representations of Laplace type for certain hypergeometric functions of three variables”, Riv. Mat. Univ. Parma, 8 (1957), 133–143 | MR | Zbl
[35] Schaback R., “Native Hilbert spaces for radial basis functions. I”, New Developments in Approximation Theory (Dortmund, 1998), Internat. Ser. Numer. Math., 132, Birkhäuser, Basel, 1999, 255–282 | MR | Zbl
[36] Schaback R., “A unified theory of radial basis functions. Native Hilbert spaces for radial basis functions. II”, J. Comput. Appl. Math., 121 (2000), 165–177 | DOI | MR | Zbl
[37] Schaback R., “The missing Wendland functions”, Adv. Comput. Math., 34 (2011), 67–81 | DOI | MR | Zbl
[38] Schipper J. H., On the algebraicity of GKZ-hypergeometric functions defined by a (hyper)-cuboid, Bachelor's thesis, Utrecht University, 2009 http://www.joachimschipper.nl/publications/bsc.pdf
[39] Schoenberg I. J., “Metric spaces and completely monotone functions”, Ann. of Math., 39 (1938), 811–841 | DOI | MR
[40] Schoenberg I. J., “Positive definite functions on spheres”, Duke Math. J., 9 (1942), 96–108 | DOI | MR | Zbl
[41] Schwarz H. A., “Ueber diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Function ihres vierten Elementes darstellt”, J. Reine Angew. Math., 75 (1873), 292–335 | DOI | MR
[42] Srivastava H. M., Manocha H. L., A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press, New York, 1984 | MR | Zbl
[43] Stein E. M., Boundary behavior of holomorphic functions of several complex variables, Mathematical Notes, 11, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972 | MR
[44] Szegő G., Orthogonal polynomials, American Mathematical Society Colloquium Publications, 23, Amer. Math. Soc., Providence, R.I., 1959 | MR | Zbl
[45] Wendland H., “Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree”, Adv. Comput. Math., 4 (1995), 389–396 | DOI | MR | Zbl
[46] Wünsche A., “Generalized Zernike or disc polynomials”, J. Comput. Appl. Math., 174 (2005), 135–163 | DOI | MR | Zbl
[47] Zernike F., “Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode”, Physica, 1 (1934), 689–704 | DOI | Zbl
[48] Zernike F., Brinkman H. C., “Hypersphärische Funktionen und die in sphärischen Bereichen orthogonalen Polynome”, Proc. Akad. Amsterdam, 38 (1935), 161–170
[49] Ziegel J., “Convolution roots and differentiability of isotropic positive definite functions on spheres”, Proc. Amer. Math. Soc., 142 (2014), 2063–2077, arXiv: 1201.5833 | DOI | MR | Zbl