Parallelisms Lie Connections
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this article is to study rational parallelisms of algebraic varieties by means of the transcendence of their symmetries. The nature of this transcendence is measured by a Galois group built from the Picard–Vessiot theory of principal connections.
Keywords: parallelism; isogeny; $G$-structure; linear connection; principal connection; differential Galois theory.
@article{SIGMA_2017_13_a85,
     author = {David Bl\'azquez-Sanz and Guy Casale},
     title = {Parallelisms & {Lie} {Connections}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a85/}
}
TY  - JOUR
AU  - David Blázquez-Sanz
AU  - Guy Casale
TI  - Parallelisms & Lie Connections
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a85/
LA  - en
ID  - SIGMA_2017_13_a85
ER  - 
%0 Journal Article
%A David Blázquez-Sanz
%A Guy Casale
%T Parallelisms & Lie Connections
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a85/
%G en
%F SIGMA_2017_13_a85
David Blázquez-Sanz; Guy Casale. Parallelisms & Lie Connections. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a85/

[1] Beilinson A., Drinfeld V., Chiral algebras, American Mathematical Society Colloquium Publications, 51, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl

[2] Bonnet P., “Minimal invariant varieties and first integrals for algebraic foliations”, Bull. Braz. Math. Soc. (N.S.), 37 (2006), 1–17, arXiv: math.AG/0602274 | DOI | MR | Zbl

[3] Cartan E., “Les sous-groupes des groupes continus de transformations”, Ann. Sci. École Norm. Sup. (3), 25 (1908), 57–194 | DOI | MR | Zbl

[4] Chevalley C., Théorie des groupes de Lie, v. III, Actualités Sci. Ind., 1226, Théorèmes généraux sur les algèbres de Lie, Hermann Cie, Paris, 1955 | MR

[5] Guillemin V., Sternberg S., Deformation theory of pseudogroup structures, Mem. Amer. Math. Soc., 64, 1966, 80 pp. | DOI | MR | Zbl

[6] Kolchin E. R., Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press, New York–London, 1973 | MR | Zbl

[7] Malgrange B., Pseudogroupes de {L}ie et théorie de {G}alois différentielle, Preprint IHES/M/10/11, Institut des Hautes Études Scientifiques, 2010

[8] Malgrange B., “Leon Ehrenpreis: some old souvenirs”, The Mathematical Legacy of Leon Ehrenpreis, Springer Proc. Math., 16, Springer, Milan, 2012, 3–6 | DOI | MR | Zbl

[9] Onishchik A. L., Vinberg E. B., Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, 1990 | DOI | MR | Zbl

[10] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl

[11] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl

[12] Wang H. C., “Complex parallisable manifolds”, Proc. Amer. Math. Soc., 5 (1954), 771–776 | DOI | MR | Zbl

[13] Winkelmann J., “On manifolds with trivial logarithmic tangent bundle”, Osaka J. Math., 41 (2004), 473–484 | MR | Zbl

[14] Winkelmann J., “On manifolds with trivial logarithmic tangent bundle: the non-Kähler case”, Transform. Groups, 13 (2008), 195–209 | DOI | MR | Zbl