@article{SIGMA_2017_13_a85,
author = {David Bl\'azquez-Sanz and Guy Casale},
title = {Parallelisms & {Lie} {Connections}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a85/}
}
David Blázquez-Sanz; Guy Casale. Parallelisms & Lie Connections. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a85/
[1] Beilinson A., Drinfeld V., Chiral algebras, American Mathematical Society Colloquium Publications, 51, Amer. Math. Soc., Providence, RI, 2004 | DOI | MR | Zbl
[2] Bonnet P., “Minimal invariant varieties and first integrals for algebraic foliations”, Bull. Braz. Math. Soc. (N.S.), 37 (2006), 1–17, arXiv: math.AG/0602274 | DOI | MR | Zbl
[3] Cartan E., “Les sous-groupes des groupes continus de transformations”, Ann. Sci. École Norm. Sup. (3), 25 (1908), 57–194 | DOI | MR | Zbl
[4] Chevalley C., Théorie des groupes de Lie, v. III, Actualités Sci. Ind., 1226, Théorèmes généraux sur les algèbres de Lie, Hermann Cie, Paris, 1955 | MR
[5] Guillemin V., Sternberg S., Deformation theory of pseudogroup structures, Mem. Amer. Math. Soc., 64, 1966, 80 pp. | DOI | MR | Zbl
[6] Kolchin E. R., Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press, New York–London, 1973 | MR | Zbl
[7] Malgrange B., Pseudogroupes de {L}ie et théorie de {G}alois différentielle, Preprint IHES/M/10/11, Institut des Hautes Études Scientifiques, 2010
[8] Malgrange B., “Leon Ehrenpreis: some old souvenirs”, The Mathematical Legacy of Leon Ehrenpreis, Springer Proc. Math., 16, Springer, Milan, 2012, 3–6 | DOI | MR | Zbl
[9] Onishchik A. L., Vinberg E. B., Lie groups and algebraic groups, Springer Series in Soviet Mathematics, Springer-Verlag, 1990 | DOI | MR | Zbl
[10] Sharpe R. W., Differential geometry. Cartan's generalization of Klein's Erlangen program, Graduate Texts in Mathematics, 166, Springer-Verlag, New York, 1997 | MR | Zbl
[11] van der Put M., Singer M. F., Galois theory of linear differential equations, Grundlehren der Mathematischen Wissenschaften, 328, Springer-Verlag, Berlin, 2003 | DOI | MR | Zbl
[12] Wang H. C., “Complex parallisable manifolds”, Proc. Amer. Math. Soc., 5 (1954), 771–776 | DOI | MR | Zbl
[13] Winkelmann J., “On manifolds with trivial logarithmic tangent bundle”, Osaka J. Math., 41 (2004), 473–484 | MR | Zbl
[14] Winkelmann J., “On manifolds with trivial logarithmic tangent bundle: the non-Kähler case”, Transform. Groups, 13 (2008), 195–209 | DOI | MR | Zbl