The Inverse Spectral Problem for Jacobi-Type Pencils
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the inverse spectral problem for Jacobi-type pencils. By a Jacobi-type pencil we mean the following pencil $J_5 - \lambda J_3$, where $J_3$ is a Jacobi matrix and $J_5$ is a semi-infinite real symmetric five-diagonal matrix with positive numbers on the second subdiagonal. In the case of a special perturbation of orthogonal polynomials on a finite interval the corresponding spectral function takes an explicit form.
Keywords: operator pencil; recurrence relation; orthogonal polynomials; spectral function.
@article{SIGMA_2017_13_a84,
     author = {Sergey M. Zagorodnyuk},
     title = {The {Inverse} {Spectral} {Problem} for {Jacobi-Type} {Pencils}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a84/}
}
TY  - JOUR
AU  - Sergey M. Zagorodnyuk
TI  - The Inverse Spectral Problem for Jacobi-Type Pencils
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a84/
LA  - en
ID  - SIGMA_2017_13_a84
ER  - 
%0 Journal Article
%A Sergey M. Zagorodnyuk
%T The Inverse Spectral Problem for Jacobi-Type Pencils
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a84/
%G en
%F SIGMA_2017_13_a84
Sergey M. Zagorodnyuk. The Inverse Spectral Problem for Jacobi-Type Pencils. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a84/

[1] Atkinson F. V., Discrete and continuous boundary problems, Mathematics in Science and Engineering, 8, Academic Press, New York–London, 1964 | MR | Zbl

[2] Ben Amara J., Shkalikov A. A., Vladimirov A. A., “Spectral and oscillatory properties of a linear pencil of fourth-order differential operators”, Math. Notes, 94 (2013), 49–59, arXiv: 1112.2351 | DOI | MR | Zbl

[3] Berezans'kiĭ Ju. M., Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, 17, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl

[4] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl

[5] Gherbi A., Messirdi B., Benharrat M., “Quotient operators: new generation of linear operators”, Funct. Anal. Approx. Comput., 7 (2015), 85–93 | MR | Zbl

[6] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl

[7] Markus A. S., Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs, 71, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl

[8] Möller M., Pivovarchik V., Spectral theory of operator pencils, Hermite–Biehler functions, and their applications, Operator Theory: Advances and Applications, 246, Birkhäuser/Springer, Cham, 2015 | DOI | MR | Zbl

[9] Parlett B. N., The symmetric eigenvalue problem, Classics in Applied Mathematics, 20, SIAM, Philadelphia, PA, 1998 | DOI | MR | Zbl

[10] Rodman L., An introduction to operator polynomials, Operator Theory: Advances and Applications, 38, Birkhäuser Verlag, Basel, 1989 | DOI | MR | Zbl

[11] Simon B., Szegő's theorem and its descendants. Spectral theory for $L^2$ perturbations of orthogonal polynomials, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011 | MR

[12] Suetin P. K., Classical orthogonal polynomials, 3rd ed., Fizmatlit, M., 2005 | MR

[13] Szegő G., Orthogonal polynomials, Colloquium Publications, 33, 4th ed., American Mathematical Society, Providence, RI, 1975 | MR

[14] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[15] Zagorodnyuk S. M., “The direct and inverse spectral problems for some banded matrices”, Serdica Math. J., 37 (2011), 9–24 | MR | Zbl

[16] Zagorodnyuk S. M., “Orthogonal polynomials associated with some Jacobi-type pencils”, Ukrain. Math. J., 68 (2016), 1353–1365, arXiv: 1508.01794 | DOI | MR