@article{SIGMA_2017_13_a84,
author = {Sergey M. Zagorodnyuk},
title = {The {Inverse} {Spectral} {Problem} for {Jacobi-Type} {Pencils}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a84/}
}
Sergey M. Zagorodnyuk. The Inverse Spectral Problem for Jacobi-Type Pencils. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a84/
[1] Atkinson F. V., Discrete and continuous boundary problems, Mathematics in Science and Engineering, 8, Academic Press, New York–London, 1964 | MR | Zbl
[2] Ben Amara J., Shkalikov A. A., Vladimirov A. A., “Spectral and oscillatory properties of a linear pencil of fourth-order differential operators”, Math. Notes, 94 (2013), 49–59, arXiv: 1112.2351 | DOI | MR | Zbl
[3] Berezans'kiĭ Ju. M., Expansions in eigenfunctions of selfadjoint operators, Translations of Mathematical Monographs, 17, Amer. Math. Soc., Providence, RI, 1968 | MR | Zbl
[4] Chihara T. S., An introduction to orthogonal polynomials, Mathematics and its Applications, 13, Gordon and Breach Science Publishers, New York–London–Paris, 1978 | MR | Zbl
[5] Gherbi A., Messirdi B., Benharrat M., “Quotient operators: new generation of linear operators”, Funct. Anal. Approx. Comput., 7 (2015), 85–93 | MR | Zbl
[6] Ismail M. E. H., Classical and quantum orthogonal polynomials in one variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge University Press, Cambridge, 2005 | DOI | MR | Zbl
[7] Markus A. S., Introduction to the spectral theory of polynomial operator pencils, Translations of Mathematical Monographs, 71, Amer. Math. Soc., Providence, RI, 1988 | MR | Zbl
[8] Möller M., Pivovarchik V., Spectral theory of operator pencils, Hermite–Biehler functions, and their applications, Operator Theory: Advances and Applications, 246, Birkhäuser/Springer, Cham, 2015 | DOI | MR | Zbl
[9] Parlett B. N., The symmetric eigenvalue problem, Classics in Applied Mathematics, 20, SIAM, Philadelphia, PA, 1998 | DOI | MR | Zbl
[10] Rodman L., An introduction to operator polynomials, Operator Theory: Advances and Applications, 38, Birkhäuser Verlag, Basel, 1989 | DOI | MR | Zbl
[11] Simon B., Szegő's theorem and its descendants. Spectral theory for $L^2$ perturbations of orthogonal polynomials, M. B. Porter Lectures, Princeton University Press, Princeton, NJ, 2011 | MR
[12] Suetin P. K., Classical orthogonal polynomials, 3rd ed., Fizmatlit, M., 2005 | MR
[13] Szegő G., Orthogonal polynomials, Colloquium Publications, 33, 4th ed., American Mathematical Society, Providence, RI, 1975 | MR
[14] Teschl G., Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, 72, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl
[15] Zagorodnyuk S. M., “The direct and inverse spectral problems for some banded matrices”, Serdica Math. J., 37 (2011), 9–24 | MR | Zbl
[16] Zagorodnyuk S. M., “Orthogonal polynomials associated with some Jacobi-type pencils”, Ukrain. Math. J., 68 (2016), 1353–1365, arXiv: 1508.01794 | DOI | MR