@article{SIGMA_2017_13_a83,
author = {Jiao Zhang and Naihong Hu},
title = {Realization of $U_q({\mathfrak{sp}}_{2n})$ within the {Differential} {Algebra} on {Quantum} {Symplectic} {Space}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a83/}
}
TY - JOUR
AU - Jiao Zhang
AU - Naihong Hu
TI - Realization of $U_q({\mathfrak{sp}}_{2n})$ within the Differential Algebra on Quantum Symplectic Space
JO - Symmetry, integrability and geometry: methods and applications
PY - 2017
VL - 13
UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a83/
LA - en
ID - SIGMA_2017_13_a83
ER -
%0 Journal Article
%A Jiao Zhang
%A Naihong Hu
%T Realization of $U_q({\mathfrak{sp}}_{2n})$ within the Differential Algebra on Quantum Symplectic Space
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a83/
%G en
%F SIGMA_2017_13_a83
Jiao Zhang; Naihong Hu. Realization of $U_q({\mathfrak{sp}}_{2n})$ within the Differential Algebra on Quantum Symplectic Space. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a83/
[1] Chari V., Xi N., “Monomial bases of quantized enveloping algebras”, Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., 248, Amer. Math. Soc., Providence, RI, 1999, 69–81, arXiv: math.QA/9810167 | DOI | MR | Zbl
[2] Fiore G., “Realization of $U_q({\rm so}(N))$ within the differential algebra on $R^N_q$”, Comm. Math. Phys., 169 (1995), 475–500, arXiv: hep-th/9403033 | DOI | MR | Zbl
[3] Gu H., Hu N., “Loewy filtration and quantum de Rham cohomology over quantum divided power algebra”, J. Algebra, 435 (2015), 1–32 | DOI | MR | Zbl
[4] Heckenberger I., “Spin geometry on quantum groups via covariant differential calculi”, Adv. Math., 175 (2003), 197–242, arXiv: math.QA/0006226 | DOI | MR | Zbl
[5] Hu H., Hu N., “Double-bosonization and Majid's conjecture, (I): Rank-inductions of $ABCD$”, J. Math. Phys., 56 (2015), 111702, 16 pp., arXiv: 1505.02612 | DOI | MR | Zbl
[6] Hu N., “Quantum divided power algebra, $q$-derivatives, and some new quantum groups”, J. Algebra, 232 (2000), 507–540, arXiv: 0902.2858 | DOI | MR | Zbl
[7] Hu N., “Quantum group structure associated to the quantum affine space”, Algebra Colloq., 11 (2004), 483–492 | MR | Zbl
[8] Jantzen J. C., Lectures on quantum groups, Graduate Studies in Mathematics, 6, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl
[9] Kassel C., Quantum groups, Graduate Texts in Mathematics, 155, Springer-Verlag, New York, 1995 | DOI | MR | Zbl
[10] Klimyk A., Schmüdgen K., Quantum groups and their representations, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1997 | DOI | MR | Zbl
[11] Li Y., Hu N., “The Green rings of the 2-rank Taft algebra and its two relatives twisted”, J. Algebra, 410 (2014), 1–35, arXiv: 1305.1444 | DOI | MR | Zbl
[12] Lusztig G., “Quantum deformations of certain simple modules over enveloping algebras”, Adv. Math., 70 (1988), 237–249 | DOI | MR | Zbl
[13] Lusztig G., Introduction to quantum groups, Progress in Mathematics, 110, Birkhäuser Boston, Inc., Boston, MA, 1993 | DOI | MR | Zbl
[14] Majid S., “Double-bosonization of braided groups and the construction of $U_q({\mathfrak g})$”, Math. Proc. Cambridge Philos. Soc., 125 (1999), 151–192, arXiv: q-alg/9511001 | DOI | MR | Zbl
[15] Manin Yu. I., Quantum groups and noncommutative geometry, Université de Montréal, Centre de Recherches Mathématiques, Montreal, QC, 1988 | MR
[16] Montgomery S., Smith S. P., “Skew derivations and $U_q({\rm sl}(2))$”, Israel J. Math., 72 (1990), 158–166 | DOI | MR | Zbl
[17] Ogievetsky O., “Differential operators on quantum spaces for ${\rm GL}_q(n)$ and ${\rm SO}_q(n)$”, Lett. Math. Phys., 24 (1992), 245–255 | DOI | MR | Zbl
[18] Ogievetsky O., Schmidke W. B., Wess J., Zumino B., “Six generator $q$-deformed Lorentz algebra”, Lett. Math. Phys., 23 (1991), 233–240 | DOI | MR | Zbl
[19] Ogievetsky O., Schmidke W. B., Wess J., Zumino B., “$q$-deformed Poincaré algebra”, Comm. Math. Phys., 150 (1992), 495–518 | DOI | MR | Zbl
[20] Radford D. E., Towber J., “Yetter–Drinfel'd categories associated to an arbitrary bialgebra”, J. Pure Appl. Algebra, 87 (1993), 259–279 | DOI | MR | Zbl
[21] Reshetikhin N. Yu., Takhtadzhyan L. A., Faddeev L. D., “Quantization of Lie groups and Lie algebras”, Leningrad Math. J., 1 (1990), 178–206 | MR | Zbl
[22] Schauenburg P., “Hopf modules and Yetter–Drinfel'd modules”, J. Algebra, 169 (1994), 874–890 | DOI | MR | Zbl
[23] Wess J., Zumino B., “Covariant differential calculus on the quantum hyperplane”, Nuclear Phys. B Proc. Suppl., 18 (1990), 302–312 | DOI | MR
[24] Woronowicz S. L., “Differential calculus on compact matrix pseudogroups (quantum groups)”, Comm. Math. Phys., 122 (1989), 125–170 | DOI | MR | Zbl
[25] Yetter D. N., “Quantum groups and representations of monoidal categories”, Math. Proc. Cambridge Philos. Soc., 108 (1990), 261–290 | DOI | MR | Zbl