@article{SIGMA_2017_13_a82,
author = {Max Kronberg and Muhammad Afzal Soomro and Jaap Top},
title = {Twists of {Elliptic} {Curves}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a82/}
}
Max Kronberg; Muhammad Afzal Soomro; Jaap Top. Twists of Elliptic Curves. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a82/
[1] Badr E., Bars F., Lorenzo García E., “On twists of smooth plane curves”, Math. Comp. (to appear) , arXiv: 1603.08711 | DOI
[2] Bond R. J., “Capitulation in abelian extensions of number fields”, Acta Arith., 179 (2017), 201–232 | DOI | MR | Zbl
[3] Bosca S., “Principalization of ideals in abelian extensions of number fields”, Int. J. Number Theory, 5 (2009), 527–539, arXiv: 0803.4147 | DOI | MR | Zbl
[4] Bradshaw R., Cremona J., Stein W., Lenox M., Elliptic curves over finite fields, 2005–2011 (sage code) https://github.com/sagemath/sage/blob/master/src/sage/schemes/elliptic_curves/ell_finite_field.py | MR
[5] Cassels J. W. S., “Diophantine equations with special reference to elliptic curves”, J. London Math. Soc., 41 (1966), 193–291 | DOI | MR
[6] Connell I., Elliptic curve handbook, Unpublished lecture notes, Chapter 4 discusses twists of elliptic curves, 1999 http://www.math.rug.nl/t̃op/ian.pdf
[7] Gouvêa F. Q., Yui N., Arithmetic of diagonal hypersurfaces over finite fields, London Mathematical Society Lecture Note Series, 209, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[8] Karemaker V., Pries R., Fully maximal and fully minimal abelian varieties, arXiv: 1703.10076
[9] Levy A., Manes M., Thompson B., “Uniform bounds for preperiodic points in families of twists”, Proc. Amer. Math. Soc., 142 (2014), 3075–3088, arXiv: 1204.4447 | DOI | MR | Zbl
[10] Li Y., Hu S., “Capitulation problem for global function fields”, Arch. Math. (Basel), 97 (2011), 413–421 | DOI | MR | Zbl
[11] Lombardo D., Lorenzo García E., Computing twists of hyperelliptic curves, arXiv: 1611.0485
[12] Lorenzo García E., Twists of non-hyperelliptic curves of genus 3, arXiv: 1604.02410 | MR
[13] Manes M., “$\mathbb Q$-rational cycles for degree-2 rational maps having an automorphism”, Proc. Lond. Math. Soc., 96 (2008), 669–696 | DOI | MR | Zbl
[14] Meagher S., Top J., “Twists of genus three curves over finite fields”, Finite Fields Appl., 16 (2010), 347–368 | DOI | MR | Zbl
[15] Schoof R., “Nonsingular plane cubic curves over finite fields”, J. Combin. Theory Ser. A, 46 (1987), 183–211 | DOI | MR | Zbl
[16] Schoof R., Washington L. C., “Visibility of ideal classes”, J. Number Theory, 130 (2010), 2715–2731, arXiv: 0809.5209 | DOI | MR | Zbl
[17] Serre J.-P., Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York–Berlin, 1979 | DOI | MR | Zbl
[18] Serre J.-P., Galois cohomology, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[19] Silverman J. H., “The field of definition for dynamical systems on $P^1$”, Compositio Math., 98 (1995), 269–304 | MR | Zbl
[20] Silverman J. H., The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, New York, 2007 | DOI | MR | Zbl
[21] Silverman J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, 2nd ed., Springer, Dordrecht, 2009 | DOI | MR | Zbl
[22] Soomro M. A., Algebraic curves over finite fields, Ph.D. Thesis, University of Groningen, 2013 http://hdl.handle.net/11370/024430b9-3e8e-497f-8374-326f014a26e7
[23] Stout B. J., “A dynamical Shafarevich theorem for twists of rational morphisms”, Acta Arith., 166 (2014), 69–80 | DOI | MR | Zbl
[24] Top J., Verschoor C., “Counting points on the Fricke–Macbeath curve over finite fields”, J. Théor. Nombres Bordeaux (to appear)