Twists of Elliptic Curves
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this note we extend the theory of twists of elliptic curves as presented in various standard texts for characteristic not equal to two or three to the remaining characteristics. For this, we make explicit use of the correspondence between the twists and the Galois cohomology set $H^1\big(\operatorname{G}_{\overline{K}/K}, \operatorname{Aut}_{\overline{K}}(E)\big)$. The results are illustrated by examples.
Keywords: elliptic curve; twist; automorphisms; Galois cohomology.
@article{SIGMA_2017_13_a82,
     author = {Max Kronberg and Muhammad Afzal Soomro and Jaap Top},
     title = {Twists of {Elliptic} {Curves}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a82/}
}
TY  - JOUR
AU  - Max Kronberg
AU  - Muhammad Afzal Soomro
AU  - Jaap Top
TI  - Twists of Elliptic Curves
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a82/
LA  - en
ID  - SIGMA_2017_13_a82
ER  - 
%0 Journal Article
%A Max Kronberg
%A Muhammad Afzal Soomro
%A Jaap Top
%T Twists of Elliptic Curves
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a82/
%G en
%F SIGMA_2017_13_a82
Max Kronberg; Muhammad Afzal Soomro; Jaap Top. Twists of Elliptic Curves. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a82/

[1] Badr E., Bars F., Lorenzo García E., “On twists of smooth plane curves”, Math. Comp. (to appear) , arXiv: 1603.08711 | DOI

[2] Bond R. J., “Capitulation in abelian extensions of number fields”, Acta Arith., 179 (2017), 201–232 | DOI | MR | Zbl

[3] Bosca S., “Principalization of ideals in abelian extensions of number fields”, Int. J. Number Theory, 5 (2009), 527–539, arXiv: 0803.4147 | DOI | MR | Zbl

[4] Bradshaw R., Cremona J., Stein W., Lenox M., Elliptic curves over finite fields, 2005–2011 (sage code) https://github.com/sagemath/sage/blob/master/src/sage/schemes/elliptic_curves/ell_finite_field.py | MR

[5] Cassels J. W. S., “Diophantine equations with special reference to elliptic curves”, J. London Math. Soc., 41 (1966), 193–291 | DOI | MR

[6] Connell I., Elliptic curve handbook, Unpublished lecture notes, Chapter 4 discusses twists of elliptic curves, 1999 http://www.math.rug.nl/t̃op/ian.pdf

[7] Gouvêa F. Q., Yui N., Arithmetic of diagonal hypersurfaces over finite fields, London Mathematical Society Lecture Note Series, 209, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl

[8] Karemaker V., Pries R., Fully maximal and fully minimal abelian varieties, arXiv: 1703.10076

[9] Levy A., Manes M., Thompson B., “Uniform bounds for preperiodic points in families of twists”, Proc. Amer. Math. Soc., 142 (2014), 3075–3088, arXiv: 1204.4447 | DOI | MR | Zbl

[10] Li Y., Hu S., “Capitulation problem for global function fields”, Arch. Math. (Basel), 97 (2011), 413–421 | DOI | MR | Zbl

[11] Lombardo D., Lorenzo García E., Computing twists of hyperelliptic curves, arXiv: 1611.0485

[12] Lorenzo García E., Twists of non-hyperelliptic curves of genus 3, arXiv: 1604.02410 | MR

[13] Manes M., “$\mathbb Q$-rational cycles for degree-2 rational maps having an automorphism”, Proc. Lond. Math. Soc., 96 (2008), 669–696 | DOI | MR | Zbl

[14] Meagher S., Top J., “Twists of genus three curves over finite fields”, Finite Fields Appl., 16 (2010), 347–368 | DOI | MR | Zbl

[15] Schoof R., “Nonsingular plane cubic curves over finite fields”, J. Combin. Theory Ser. A, 46 (1987), 183–211 | DOI | MR | Zbl

[16] Schoof R., Washington L. C., “Visibility of ideal classes”, J. Number Theory, 130 (2010), 2715–2731, arXiv: 0809.5209 | DOI | MR | Zbl

[17] Serre J.-P., Local fields, Graduate Texts in Mathematics, 67, Springer-Verlag, New York–Berlin, 1979 | DOI | MR | Zbl

[18] Serre J.-P., Galois cohomology, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl

[19] Silverman J. H., “The field of definition for dynamical systems on $P^1$”, Compositio Math., 98 (1995), 269–304 | MR | Zbl

[20] Silverman J. H., The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, New York, 2007 | DOI | MR | Zbl

[21] Silverman J. H., The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, 2nd ed., Springer, Dordrecht, 2009 | DOI | MR | Zbl

[22] Soomro M. A., Algebraic curves over finite fields, Ph.D. Thesis, University of Groningen, 2013 http://hdl.handle.net/11370/024430b9-3e8e-497f-8374-326f014a26e7

[23] Stout B. J., “A dynamical Shafarevich theorem for twists of rational morphisms”, Acta Arith., 166 (2014), 69–80 | DOI | MR | Zbl

[24] Top J., Verschoor C., “Counting points on the Fricke–Macbeath curve over finite fields”, J. Théor. Nombres Bordeaux (to appear)