@article{SIGMA_2017_13_a81,
author = {Basile Herlemont and Oleg Ogievetsky},
title = {Differential {Calculus} on $\mathbf{h}${-Deformed} {Spaces}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a81/}
}
Basile Herlemont; Oleg Ogievetsky. Differential Calculus on $\mathbf{h}$-Deformed Spaces. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a81/
[1] Alekseev A. Y., Faddeev L. D., “$(T^*G)_t$: a toy model for conformal field theory”, Comm. Math. Phys., 141 (1991), 413–422 | DOI | MR | Zbl
[2] Bergman G. M., “The diamond lemma for ring theory”, Adv. Math., 29 (1978), 178–218 | DOI | MR
[3] Bokut' L. A., “Embeddings into simple associative algebras”, Algebra Logic, 15 (1976), 73–90 | DOI | MR
[4] Bytsko A. G., Faddeev L. D., “$(T^*{\mathcal B})_q$, $q$-analog of model space and the Clebsch–Gordan coefficients generating matrices”, J. Math. Phys., 37 (1996), 6324–6348, arXiv: q-alg/9508022 | DOI | MR | Zbl
[5] Furlan P., Hadjiivanov L. K., Isaev A. P., Ogievetsky O. V., Pyatov P. N., Todorov I. T., “Quantum matrix algebra for the ${\rm SU}(n)$ WZNW model”, J. Phys. A: Math. Gen., 36 (2003), 5497–5530, arXiv: hep-th/0003210 | DOI | MR | Zbl
[6] Gelfand I. M., Collected papers, v. II, Springer-Verlag, Berlin, 1988, 653–656 | MR | MR | Zbl
[7] Hadjiivanov L. K., Isaev A. P., Ogievetsky O. V., Pyatov P. N., Todorov I. T., “Hecke algebraic properties of dynamical $R$-matrices. Application to related quantum matrix algebras”, J. Math. Phys., 40 (1999), 427–448, arXiv: q-alg/9712026 | DOI | MR | Zbl
[8] Khoroshkin S., Nazarov M., “Mickelsson algebras and representations of Yangians”, Trans. Amer. Math. Soc., 364 (2012), 1293–1367, arXiv: 0912.1101 | DOI | MR | Zbl
[9] Khoroshkin S., Ogievetsky O., “Mickelsson algebras and Zhelobenko operators”, J. Algebra, 319 (2008), 2113–2165, arXiv: math.QA/0606259 | DOI | MR | Zbl
[10] Khoroshkin S., Ogievetsky O., “Diagonal reduction algebras of $gl$ type”, Funct. Anal. Appl., 44 (2010), 182–198, arXiv: 0912.4055 | DOI | MR | Zbl
[11] Khoroshkin S., Ogievetsky O., “Structure constants of diagonal reduction algebras of $gl$ type”, SIGMA, 7 (2011), 064, 34 pp., arXiv: 1101.2647 | DOI | MR | Zbl
[12] Khoroshkin S., Ogievetsky O., “Rings of fractions of reduction algebras”, Algebr. Represent. Theory, 17 (2014), 265–274 | DOI | MR | Zbl
[13] Khoroshkin S., Ogievetsky O., “Diagonal reduction algebra and the reflection equation”, Israel J. Math., 221 (2017), 705–729, arXiv: 1510.05258 | DOI | MR
[14] Mickelsson J., “Step algebras of semi-simple subalgebras of Lie algebras”, Rep. Math. Phys., 4 (1973), 307–318 | DOI | MR | Zbl
[15] Ogievetsky O., “Uses of quantum spaces”, Quantum Symmetries in Theoretical Physics and Mathematics (Bariloche, 2000), Contemp. Math., 294, Amer. Math. Soc., Providence, RI, 2002, 161–232 | DOI | MR | Zbl
[16] Ogievetsky O., Herlemont B., “Rings of $\bf h$-deformed differential operators”, Theoret. and Math. Phys., 192 (2017), 1218–1229, arXiv: 1612.08001 | DOI | MR
[17] Tolstoy V. N., “Fortieth anniversary of extremal projector method for Lie symmetries”, Noncommutative Geometry and Representation Theory in Mathematical Physics, Contemp. Math., 391, Amer. Math. Soc., Providence, RI, 2005, 371–384, arXiv: math-ph/0412087 | DOI | MR | Zbl
[18] van den Hombergh A., Harish–Chandra modules and representations of step algebra, Ph.D. Thesis, Katolic University of Nijmegen, 1976 http://hdl.handle.net/2066/147527
[19] Wess J., Zumino B., “Covariant differential calculus on the quantum hyperplane”, Nuclear Phys. B Proc. Suppl., 18 (1990), 302–312 | DOI | MR
[20] Zhelobenko D. P., “Classical groups. Spectral analysis of finite-dimensional representations”, Russian Math. Surveys, 17:1 (1962), 1–94 | DOI | MR
[21] Zhelobenko D. P., “Extremal cocycles on Weyl groups”, Funct. Anal. Appl., 21 (1987), 183–192 | DOI | MR | Zbl
[22] Zhelobenko D. P., Representations of reductive Lie algebras, Nauka, M., 1994 | MR