@article{SIGMA_2017_13_a80,
author = {Matthias Hammerl and Katja Sagerschnig and Josef \v{S}ilhan and Arman Taghavi-Chabert and Vojt\v{e}ch \v{Z}\'adn{\'\i}k},
title = {A {Projective-to-Conformal} {Fefferman-Type} {Construction}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a80/}
}
TY - JOUR AU - Matthias Hammerl AU - Katja Sagerschnig AU - Josef Šilhan AU - Arman Taghavi-Chabert AU - Vojtěch Žádník TI - A Projective-to-Conformal Fefferman-Type Construction JO - Symmetry, integrability and geometry: methods and applications PY - 2017 VL - 13 UR - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a80/ LA - en ID - SIGMA_2017_13_a80 ER -
%0 Journal Article %A Matthias Hammerl %A Katja Sagerschnig %A Josef Šilhan %A Arman Taghavi-Chabert %A Vojtěch Žádník %T A Projective-to-Conformal Fefferman-Type Construction %J Symmetry, integrability and geometry: methods and applications %D 2017 %V 13 %U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a80/ %G en %F SIGMA_2017_13_a80
Matthias Hammerl; Katja Sagerschnig; Josef Šilhan; Arman Taghavi-Chabert; Vojtěch Žádník. A Projective-to-Conformal Fefferman-Type Construction. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a80/
[1] Alt J., “On quaternionic contact Fefferman spaces”, Differential Geom. Appl., 28 (2010), 376–394, arXiv: 1003.1849 | DOI | MR | Zbl
[2] Bailey T. N., Eastwood M. G., Gover A. R., “Thomas's structure bundle for conformal, projective and related structures”, Rocky Mountain J. Math., 24 (1994), 1191–1217 | DOI | MR | Zbl
[3] Baum H., Friedrich T., Grunewald R., Kath I., Twistor and Killing spinors on Riemannian manifolds, Seminarberichte, 108, Humboldt Universität, Berlin, 1990 | MR | Zbl
[4] Calderbank D. M. J., Diemer T., “Differential invariants and curved Bernstein–Gelfand–Gelfand sequences”, J. Reine Angew. Math., 537 (2001), 67–103, arXiv: math.DG/0001158 | DOI | MR | Zbl
[5] Čap A., “Correspondence spaces and twistor spaces for parabolic geometries”, J. Reine Angew. Math., 582 (2005), 143–172, arXiv: math.DG/0102097 | DOI | MR | Zbl
[6] Čap A., “Two constructions with parabolic geometries”, Rend. Circ. Mat. Palermo (2) Suppl., 2006, 11–37, arXiv: math.DG/0504389 | MR
[7] Čap A., “Infinitesimal automorphisms and deformations of parabolic geometries”, J. Eur. Math. Soc., 10 (2008), 415–437, arXiv: math.DG/0508535 | DOI | MR
[8] Čap A., Gover A. R., “CR-tractors and the Fefferman space”, Indiana Univ. Math. J., 57 (2008), 2519–2570, arXiv: math.DG/0611938 | DOI | MR | Zbl
[9] Čap A., Gover A. R., “A holonomy characterisation of Fefferman spaces”, Ann. Global Anal. Geom., 38 (2010), 399–412, arXiv: math.DG/0611939 | DOI | MR | Zbl
[10] Čap A., Gover A. R., Hammerl M., “Holonomy reductions of Cartan geometries and curved orbit decompositions”, Duke Math. J., 163 (2014), 1035–1070, arXiv: 1103.4497 | DOI | MR | Zbl
[11] Čap A., Slovák J., Parabolic geometries. I. Background and general theory, Mathematical Surveys and Monographs, 154, Amer. Math. Soc., Providence, RI, 2009 | DOI | MR | Zbl
[12] Čap A., Slovák J., Souček V., “Bernstein–Gelfand–Gelfand sequences”, Ann. of Math., 154 (2001), 97–113, arXiv: math.DG/0001164 | DOI | MR | Zbl
[13] Chevalley C. C., The algebraic theory of spinors, Columbia University Press, New York, 1954 | MR | Zbl
[14] Crampin M., Saunders D. J., “Fefferman-type metrics and the projective geometry of sprays in two dimensions”, Math. Proc. Cambridge Philos. Soc., 142 (2007), 509–523 | DOI | MR | Zbl
[15] Dunajski M., Tod P., “Four-dimensional metrics conformal to Kähler”, Math. Proc. Cambridge Philos. Soc., 148 (2010), 485–503, arXiv: 0901.2261 | DOI | MR | Zbl
[16] Eastwood M., “Notes on conformal differential geometry”, Rend. Circ. Mat. Palermo (2) Suppl., 1996, 57–76 | MR | Zbl
[17] Eastwood M., “Notes on projective differential geometry”, Symmetries and Overdetermined Systems of Partial Differential Equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 41–60, arXiv: 0806.3998 | DOI | MR | Zbl
[18] Gover A. R., “Laplacian operators and $Q$-curvature on conformally Einstein manifolds”, Math. Ann., 336 (2006), 311–334, arXiv: math.DG/0506037 | DOI | MR | Zbl
[19] Hammerl M., “Coupling solutions of BGG-equations in conformal spin geometry”, J. Geom. Phys., 62 (2012), 213–223, arXiv: 1009.1547 | DOI | MR | Zbl
[20] Hammerl M., Sagerschnig K., Šilhan J., Taghavi-Chabert A., Žádník V., Conformal Patterson–Walker metrics, arXiv: 1604.08471
[21] Hammerl M., Sagerschnig K., Šilhan J., Taghavi-Chabert A., Žádník V., Fefferman–Graham ambient metrics of Patterson–Walker metrics, arXiv: 1608.06875
[22] Hughston L. P., Mason L. J., “A generalised Kerr–Robinson theorem”, Classical Quantum Gravity, 5 (1988), 275–285 | DOI | MR | Zbl
[23] Leitner F., “A remark on unitary conformal holonomy”, Symmetries and overdetermined systems of partial differential equations, IMA Vol. Math. Appl., 144, Springer, New York, 2008, 445–460 | DOI | MR | Zbl
[24] Nurowski P., “Projective versus metric structures”, J. Geom. Phys., 62 (2012), 657–674, arXiv: 1003.1469 | DOI | MR | Zbl
[25] Nurowski P., Sparling G. A., “Three-dimensional Cauchy–Riemann structures and second-order ordinary differential equations”, Classical Quantum Gravity, 20 (2003), 4995–5016, arXiv: math.DG/0306331 | DOI | MR | Zbl
[26] Patterson E. M., Walker A. G., “Riemann extensions”, Quart. J. Math., 3 (1952), 19–28 | DOI | MR | Zbl
[27] Penrose R., Rindler W., Spinors and space-time, v. 1, Cambridge Monographs on Mathematical Physics, Two-spinor calculus and relativistic fields, Cambridge University Press, Cambridge, 1984 | DOI | MR | Zbl
[28] Penrose R., Rindler W., Spinors and space-time, v. 2, Cambridge Monographs on Mathematical Physics, Spinor and twistor methods in space-time geometry, Cambridge University Press, Cambridge, 1986 | DOI | MR
[29] Taghavi-Chabert A., “Pure spinors, intrinsic torsion and curvature in even dimensions”, Differential Geom. Appl., 46 (2016), 164–203, arXiv: 1212.3595 | DOI | MR | Zbl
[30] Taghavi-Chabert A., “Twistor geometry of null foliations in complex Euclidean space”, SIGMA, 13 (2017), 005, 42 pp., arXiv: 1505.06938 | DOI | MR | Zbl