@article{SIGMA_2017_13_a79,
author = {Vladimir A. Fateev},
title = {Integrable {Deformations} of {Sine-Liouville} {Conformal} {Field} {Theory} and {Duality}},
journal = {Symmetry, integrability and geometry: methods and applications},
year = {2017},
volume = {13},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a79/}
}
Vladimir A. Fateev. Integrable Deformations of Sine-Liouville Conformal Field Theory and Duality. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a79/
[1] Ahn C., Balog J., Ravanini F., NLIE for the sausage model, arXiv: 1701.08933
[2] Arinshtein A. E., Fateev V. A., Zamolodchikov A. B., “Quantum $S$-matrix of the $(1+1)$-dimensional Todd chain”, Phys. Lett. B, 87 (1979), 389–392 | DOI
[3] Arutyunov G., Borsato R., Frolov S., “$S$-matrix for strings on $\eta$-deformed ${\rm AdS}_5\times {\rm S}^5$”, J. High Energy Phys., 2014:4 (2014), 002, 24 pp., arXiv: 1312.3542 | DOI | MR
[4] Bazhanov V. V., Kotousov G. A., Lukyanov S. L., Quantum transfer-matrices for the sausage model, arXiv: 1706.09941
[5] Bonneau G., Delduc F., “$S$-matrix properties versus renormalizability in two-dimensional ${\rm O}(N)$ symmetric models”, Nuclear Phys. B, 250 (1985), 561–592 | DOI | MR
[6] Braden H. W., Corrigan E., Dorey P. E., Sasaki R., “Affine Toda field theory and exact $S$-matrices”, Nuclear Phys. B, 338 (1990), 689–746 | DOI | MR | Zbl
[7] Coleman S., “Quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev. D, 11 (1975), 2088–2097 | DOI
[8] de Vega H. J., Maillet J. M., “Renormalization character and quantum $S$-matrix for a classically integrable theory”, Phys. Lett. B, 101 (1981), 302–306 | DOI | MR
[9] Delius G. W., Grisaru M. T., Zanon D., “Exact $S$-matrices for non-simply-laced affine Toda theories”, Nuclear Phys. B, 382 (1992), 365–406, arXiv: hep-th/9201067 | DOI | MR | Zbl
[10] Dijkgraaf R., Verlinde H., Verlinde E., “String propagation in a black hole geometry”, Nuclear Phys. B, 371 (1992), 269–314 | DOI | MR
[11] Fateev V. A., “Integrable deformations in $Z_N$-symmetrical models of the conformal quantum field theory”, Internat. J. Modern Phys. A, 6 (1991), 2109–2132 | DOI | MR
[12] Fateev V. A., “The exact relations between the coupling constants and the masses of particles for the integrable perturbed conformal field theories”, Phys. Lett. B, 324 (1994), 45–51 | DOI | MR
[13] Fateev V. A., “The duality between two-dimensional integrable field theories and sigma models”, Phys. Lett. B, 357 (1995), 397–403 | DOI | MR
[14] Fateev V. A., “Integrable deformations of affine Toda theories and duality”, Nuclear Phys. B, 479 (1996), 594–618 | DOI | MR | Zbl
[15] Fateev V. A., “The sigma model (dual) representation for a two-parameter family of integrable quantum field theories”, Nuclear Phys. B, 473 (1996), 509–538 | DOI | MR | Zbl
[16] Fateev V. A., Onofri E., “An eigenvalue problem related to the non-linear $\sigma$-model: analytical and numerical results”, J. Phys. A: Math. Gen., 36 (2003), 11881–11899, arXiv: math-ph/0307010 | DOI | MR | Zbl
[17] Fateev V. A., Onofri E., Zamolodchikov A. B., “Integrable deformations of the ${\rm O}(3)$ sigma model. The sausage model”, Nuclear Phys. B, 406 (1993), 521–565 | DOI | MR | Zbl
[18] Fateev V. A., Zamolodchikov A. B., “Self-dual solutions of the star-triangle relations in $Z_N$-models”, Phys. Lett. A, 92 (1982), 37–39 | DOI | MR
[19] Friedan D., “Nonlinear models in $2+\varepsilon $ dimensions”, Phys. Rev. Lett., 45 (1980), 1057–1060 | DOI | MR
[20] Ganin M. P., “On a Fredholm integral equation whose kernel depends on the difference of the arguments”, Izv. Vyssh. Uchebn. Zaved. Mat., 2:2 (1963), 31–43 | MR | Zbl
[21] Goddard P., Nuyts J., Olive D., “Gauge theories and magnetic charge”, Nuclear Phys. B, 125 (1977), 1–28 | DOI | MR
[22] Gukov S., Klebanov I. R., Polyakov A. M., “Dynamics of $(n,1)$ strings”, Phys. Lett. B, 423 (1998), 64–70, arXiv: hep-th/9711112 | DOI | MR
[23] Hasenfratz P., Maggiore M., Niedermayer F., “The exact mass gap of the ${\rm O}(3)$ and ${\rm O}(4)$ nonlinear $\sigma$-models in $d=2$”, Phys. Lett. B, 245 (1990), 522–528 | DOI | MR
[24] Hoare B., Roiban R., Tseytlin A. A., “On deformations of ${\rm AdS}_n \times {\rm S}^n$ supercosets”, J. High Energy Phys., 2014:6 (2014), 002, 34 pp., arXiv: 1403.5517 | DOI | MR
[25] Kiritsis E. B., “Duality in gauged WZW models”, Modern Phys. Lett. A, 6 (1991), 2871–2879 | DOI | MR | Zbl
[26] Klimčík C., “Integrability of the bi-Yang–Baxter $\sigma$-model”, Lett. Math. Phys., 104 (2014), 1095–1106, arXiv: 1402.2105 | DOI | MR | Zbl
[27] Lund F., Regge T., “Unified approach to strings and vortices with soliton solutions”, Phys. Rev. D, 14 (1976), 1524–1535 | DOI | MR | Zbl
[28] Maldacena J., “The large $N$ limit of superconformal field theories and supergravity”, Adv. Theor. Math. Phys., 2 (1998), 231–252, arXiv: hep-th/9711200 | DOI | MR | Zbl
[29] Maldacena J., “The large-$N$ limit of superconformal field theories and supergravity”, Internat. J. Theoret. Phys., 38 (1999), 1113–1133 | DOI | MR | Zbl
[30] Maldacena J., Moore G., Seiberg N., “Geometrical interpretation of D-branes in gauged WZW models”, J. High Energy Phys., 2001:7 (2001), 046, 63 pp., arXiv: hep-th/0105038 | DOI | MR
[31] Mandelstam S., “Soliton operators for the quantized sine-Gordon equation”, Phys. Rev. D, 11 (1975), 3026–3030 | DOI | MR
[32] Montonen C., Olive D., Magnetic monopoles as gauge particles?, Phys. Lett. B, 125 (1977), 117–120 | DOI
[33] Nemeschansky D., “Feĭgin–Fuchs representation of $\widehat{\rm su}(2)_k$ Kac–Moody algebra”, Phys. Lett. B, 224 (1989), 121–124 | DOI | MR
[34] Perelman G., The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/0211159
[35] Pohlmeyer K., “Integrable Hamiltonian systems and interactions through quadratic constraints”, Comm. Math. Phys., 46 (1976), 207–221 | DOI | MR | Zbl
[36] Seiberg N., Witten E., “Electric-magnetic duality, monopole condensation, and confinement in $N=2$ supersymmetric Yang–Mills theory”, Nuclear Phys. B, 426 (1994), 19–52, arXiv: hep-th/9407087 | DOI | MR | Zbl
[37] Witten E., “String theory and black holes”, Phys. Rev. D, 44 (1991), 314–324 | DOI | MR | Zbl
[38] Witten E., “Anti de Sitter space and holography”, Adv. Theor. Math. Phys., 2 (1998), 253–291, arXiv: hep-th/9802150 | DOI | MR | Zbl
[39] Zamolodchikov A. B., “Exact two-particle $S$-matrix of quantum sine-Gordon solitons”, Comm. Math. Phys., 55 (1977), 183–186 | DOI | MR
[40] Zamolodchikov A. B., “Mass scale in the sine-Gordon model and its reduction”, Internat. J. Modern Phys. A, 10 (1995), 1125–1150 | DOI
[41] Zamolodchikov A. B., Fateev V. A., “A model factorized $S$-matrix and an integrable spin-1 Heisenberg chain”, Soviet J. Nuclear Phys., 32 (1980), 298–303 | MR
[42] Zamolodchikov A. B., Fateev V. A., “Nonlocal (parafermion) currents in two-dimensional conformal quantum field theory and self-dual critical points in $Z_N$-symmetric statistical systems”, Sov. Phys. JETP, 62 (1985), 215–225 | MR
[43] Zamolodchikov A. B., Zamolodchikov A. B., “Massless factorized scattering and sigma models with topological terms”, Nuclear Phys. B, 379 (1992), 602–623 | DOI | MR
[44] Zamolodchikov A. B., Zamolodchikov A. B., “Conformal bootstrap in Liouville field theory”, Nuclear Phys. B, 477 (1996), 577–605, arXiv: hep-th/9506136 | DOI | MR | Zbl