Rational Solutions to the ABS List: Transformation Approach
Symmetry, integrability and geometry: methods and applications, Tome 13 (2017) Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper we derive rational solutions for the lattice potential modified Korteweg–de Vries equation, and $\mathrm{Q2}$, $\mathrm{Q1}(\delta)$, $\mathrm{H3}(\delta)$, $\mathrm{H2}$ and $\mathrm{H1}$ in the Adler–Bobenko–Suris list. Bäcklund transformations between these lattice equations are used. All these rational solutions are related to a unified $\tau$ function in Casoratian form which obeys a bilinear superposition formula.
Keywords: rational solutions; Bäcklund transformation; Casoratian; ABS list.
@article{SIGMA_2017_13_a77,
     author = {Danda Zhang and Zhang Da-Jun},
     title = {Rational {Solutions} to the {ABS} {List:} {Transformation} {Approach}},
     journal = {Symmetry, integrability and geometry: methods and applications},
     year = {2017},
     volume = {13},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a77/}
}
TY  - JOUR
AU  - Danda Zhang
AU  - Zhang Da-Jun
TI  - Rational Solutions to the ABS List: Transformation Approach
JO  - Symmetry, integrability and geometry: methods and applications
PY  - 2017
VL  - 13
UR  - http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a77/
LA  - en
ID  - SIGMA_2017_13_a77
ER  - 
%0 Journal Article
%A Danda Zhang
%A Zhang Da-Jun
%T Rational Solutions to the ABS List: Transformation Approach
%J Symmetry, integrability and geometry: methods and applications
%D 2017
%V 13
%U http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a77/
%G en
%F SIGMA_2017_13_a77
Danda Zhang; Zhang Da-Jun. Rational Solutions to the ABS List: Transformation Approach. Symmetry, integrability and geometry: methods and applications, Tome 13 (2017). http://geodesic.mathdoc.fr/item/SIGMA_2017_13_a77/

[1] Ablowitz M. J., Satsuma J., “Solitons and rational solutions of nonlinear evolution equations”, J. Math. Phys., 19 (1978), 2180–2186 | DOI | MR | Zbl

[2] Adler V. E., Bobenko A. I., Suris Yu. B., “Classification of integrable equations on quad-graphs. The consistency approach”, Comm. Math. Phys., 233 (2003), 513–543, arXiv: nlin.SI/0202024 | DOI | MR | Zbl

[3] Adler V. E., Bobenko A. I., Suris Yu. B., “Discrete nonlinear hyperbolic equations: classification of integrable cases”, Funct. Anal. Appl., 43 (2009), 3–17, arXiv: 0705.1663 | DOI | MR | Zbl

[4] Atkinson J., “Bäcklund transformations for integrable lattice equations”, J. Phys. A: Math. Theor., 41 (2008), 135202, 8 pp., arXiv: 0801.1998 | DOI | MR | Zbl

[5] Atkinson J., Hietarinta J., Nijhoff F. W., “Seed and soliton solutions for Adler's lattice equation”, J. Phys. A: Math. Theor., 40 (2007), F1–F8, arXiv: nlin.SI/0609044 | DOI | MR | Zbl

[6] Atkinson J., Hietarinta J., Nijhoff F. W., “Soliton solutions for Q3”, J. Phys. A: Math. Theor., 41 (2008), 142001, 11 pp., arXiv: 0801.0806 | DOI | MR | Zbl

[7] Atkinson J., Nijhoff F. W., “A constructive approach to the soliton solutions of integrable quadrilateral lattice equations”, Comm. Math. Phys., 299 (2010), 283–304, arXiv: 0911.0458 | DOI | MR | Zbl

[8] Bobenko A. I., Suris Yu. B., “Integrable systems on quad-graphs”, Int. Math. Res. Not., 2002 (2002), 573–611, arXiv: nlin.SI/0110004 | DOI | MR | Zbl

[9] Feng W., Zhao S., Shi Y., “Rational solutions for lattice potential KdV equation and two semi-discrete lattice potential KdV equations”, Z. Natur. A, 71 (2016), 121–128 | DOI

[10] Freeman N. C., Nimmo J. J. C., “Soliton solutions of the Korteweg–de Vries and Kadomtsev–Petviashvili equations: the Wronskian technique”, Phys. Lett. A, 95 (1983), 1–3 | DOI | MR

[11] Grammaticos B., Ramani A., Papageorgiou V., Satsuma J., Willox R., “Constructing lump-like solutions of the Hirota–Miwa equation”, J. Phys. A: Math. Theor., 40 (2007), 12619–12627 | DOI | MR | Zbl

[12] Hietarinta J., “Boussinesq-like multi-component lattice equations and multi-dimensional consistency”, J. Phys. A: Math. Theor., 44 (2011), 165204, 22 pp., arXiv: 1011.1978 | DOI | MR | Zbl

[13] Hietarinta J., Joshi N., Nijhoff F. W., Discrete systems and integrability, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2016 | DOI | MR | Zbl

[14] Hietarinta J., Zhang D.-J., “Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization”, J. Phys. A: Math. Theor., 42 (2009), 404006, 30 pp., arXiv: 0903.1717 | DOI | MR | Zbl

[15] Hirota R., “Nonlinear partial difference equations. I. A difference analogue of the Korteweg–de Vries equation”, J. Phys. Soc. Japan, 43 (1977), 1424–1433 | DOI | MR | Zbl

[16] Ma W.-X., You Y., “Solving the Korteweg–de Vries equation by its bilinear form: Wronskian solutions”, Trans. Amer. Math. Soc., 357 (2005), 1753–1778, arXiv: nlin.SI/0603008 | DOI | MR | Zbl

[17] Maruno K., Kajiwara K., Nakao S., Oikawa M., “Bilinearization of discrete soliton equations and singularity confinement”, Phys. Lett. A, 229 (1997), 173–182, arXiv: solv-int/9610005 | DOI | MR | Zbl

[18] Nijhoff F. W., “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297 (2002), 49–58, arXiv: nlin.SI/0110027 | DOI | MR | Zbl

[19] Nijhoff F. W., Atkinson J., Hietarinta J., “Soliton solutions for ABS lattice equations. I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42 (2009), 404005, 34 pp., arXiv: 0902.4873 | DOI | MR | Zbl

[20] Nijhoff F. W., Walker A. J., “The discrete and continuous Painlevé VI hierarchy and the Garnier systems”, Glasg. Math. J., 43A (2001), 109–123, arXiv: nlin.SI/0001054 | DOI | MR | Zbl

[21] Shi Y., Zhang D.-J., “Rational solutions of the H3 and Q1 models in the ABS lattice list”, SIGMA, 7 (2011), 046, 11 pp., arXiv: 1105.1583 | DOI | MR | Zbl

[22] Zhang D.-J., Hietarinta J., “Generalized solutions for the H1 model in ABS list of lattice equations”, Nonlinear and Modern Mathematical Physics, AIP Conf. Proc., 1212, Amer. Inst. Phys., Melville, NY, 2010, 154–161 | DOI | MR | Zbl